The HyperBagGraph DataEdron: An Enriched Browsing Experience of Scientific Publications Xavier Ouvrard @ UniGe & CERN supervised by: Pr. Stéphane Marchand-Maillet @ UniGe (CH) and Dr. Jean-Marie Le Goff @ CERN

UNIVERSITÉ **DE GENÈVE**

This application is a small brother of the Collaboration Spotting project @ CERN

• Collspotting Project leader: Dr Jean-Marie Le Goff • 1 fellowship, 3 PhD students http://collspotting.web.cern.ch

Leveraging insight into your data network by viewing co-occurrences while navigating across different perspectives.

Graph:

• Set of vertices and set of edges. • An edge links two vertices : pairwise relationship.

Sets:

• Regroup elements with no repetition and no order.

Hypergraphs:

- Extend graphs.
- Allow relations between multiple vertices.

• Family of hyperedges of unempty subsets of a vertex set.

Multisets: • Defined by a **universe** and a **multiplicity function**

Searching on a Scientific Publication Database

With traditional verbatim browser:

• Give linear information

• To **refine** information: perform a **new search** • Making complex query can be hazardous for most people

• Accessing the **different facets** of the information space require to perform **different searches**

But in fact:

• A space of information is **multi-facetted** • Much more information is available or can be extracted

• Use of natural language processing allow to extract keywords

• Hb-graphs highlight how the data instances are linked and allow additional information to be displayed

Current search: hypergraph ∴hen Ouyang, Liqun Qi, Xiying Yuan **Dhe first few unicyclic and bicyclic hypergraphs with larger spectral radii** A connected \$k5-uniform hypergraph with \$n5 vertices and \$m5 edges is called \$r5-cyclic if \$n≈m(k-1)-r+1 sypergraphs called hypergraph infection is ucas J. Rusnak briented Hypergraphs I: Introduction and Balance in oriented hypergraph is an oriented incidence structure that extends the concept of a signed gr Supriyo Dutta A Boolean Functions Theoretic Approach to Quantum Hypergraph States and Entre Boolean Functions and hypergraph between the Boolean functions and hypergraph Eric Emtander A class of hypergraphs that generalizes chordal graphs In this paper we introduce a class of hypergraphs that we call chord-http://arxiv.org/pdf/0803.2150v2 http://arxiv.org/pdf/0803.2150v2 Jabor Elek, Balars Szegedy Limits of Hypergraphs, Removal and Regularity Lemmas. A Non-standard We study the integral and measure theory of the ultraproduct of finite sets.

Which database can we search on?

• Arxiv

... but can be applied to any databases.

How do we proceed?

• All the **queries** are made **online** • Everything is **processed online**, including keywords if they are not provided • No intermediate storage

- The Louvain community detection algorithm is fast and efficient Layout embedding - We use a force directed algorithm - It attracts vertices that are connected and repeals the ones that are disconnected - Works well on small graphs

Switching between the different facets of the information space

Current search: 3D AND graph Abstract processed keywords

T

• Natural multisets: multiplicity function values are integer => Collection of objects with allowed repetitions.

HyperBag-graphs (Hb-graphs):

• First presented in Ouvrard & al. 2018 • Family of multisets – called **hb-edges** – of same universe called the **vertex** set

• Natural hb-graphs: use natural multisets => Allow duplication of elements

• Hypergraphs are particular hb-graphs with {0;1} for multiplicity function ranges.

Carousel view of the information space

Search on the keyword: hypergraph • Three facets of the information space • Linked by the **common references**

Facet: Authors

Facet: Processed keywords

In a Scientific Publication Database:

• Metadata store information on the structure of the DataBase • Metadata have types, that can be used either as dimension or as reference

• Data instances attached to one type of metadata can be regrouped by using a reference => we talk about co-occurences • Co-occurences are *n*-adic relationships.

• Co-occurences are **multisets**, often reduced to **sets**.

On an example:

We can retrieve in a simplified way a hypergraph: we use as reference the publication and the co-occurences of organisations seen as subsets of all organisations:

eference: Publication, Facet: Organisation				
	Pub A	Org 2, Org3, Org 4		
	Pub B	Org 1, Org 2		
	Pub C	Org 3, Org 4		
	Pub D	Org2, Org 3, Org 5		

that we can visualize with an **extra-node representation**:

Choosing as reference keywords, we retrieve **family of multisets** of organisations, called a hb-graph.

Reference: Keywords, Facet: Organisation					
scene reconstruction	$\left\{\left\{\operatorname{Org}\ 1^{1},\operatorname{Org}\ 2^{1}\right\}\right\}$				
computer vision	$\left\{\left\{\operatorname{Org1}^{1},\operatorname{Org2}^{1},\operatorname{Org}3^{1},\operatorname{Org}4^{1}\right\}\right\}$				
augmented reality	$\left\{\left\{\operatorname{Org}2^{1},\operatorname{Org}3^{3},\operatorname{Org}4^{2},\operatorname{Org}5^{1}\right\}\right\}$				
3D	$\left\{\left\{\operatorname{Org}2^{1},\operatorname{Org}3^{2},\operatorname{Org}4^{1},\operatorname{Org}5^{1}\right\}\right\}$				

The Hb-graph DataEdron: switching between the different facets of the information space

Full interactivity of faces:

reference

ences

• Highlight extra-nodes through vertices on the same

• Highlight vertices involved in the highlighted refer-

Additional information can be displayed: • Dblp / Linkedin profile • Publication abstract / full article • Wikipedia information (for keywords) • DuckDuckGo deambiguation and abstract...

How can we perform search? • Traditional text field search • Then queries can be **built visually** using vertices of the hb-graphs

Facet: Arxiv Categories

Represented by a bundled extra-node multipartite graph representation:

15–19.07.2019 @ Valencia (Spain)

• AND, OR, NOT possibilities • The graph of search can be explored and reused • **Possibility of merging** different searches on a single graph

What are the research challenges solved?

• Modeling requires a strong framework

- Particularly the switching of references is challenging • Scaling up representations (for some applications): - Requires to fasten the computation - Only appropriated for some applications • Finding important part of the representations: - A diffusion process has been proposed that allows to retrieve

information on vertices and hb-edges. - Weighted aggregation ranking

What the future work is?

• Find an efficient recommandation system based on the browsing experience of the user • Data linkage of multiple queries provenance • Having more insights require fast extraction of information from the documents itself

Do you want more information?

• Find full details on Arxiv:1905.11695 and more on:

http://www.infos-informatique.net

• Contact info:

xavier.ouvrard@cern.ch