An introduction on hyper-bag-graphs and their application to hypergraph e-adjacency tensor MCCCC 32 Duluth USA 07.10.2018

Xavier Ouvrard^{1,2}, Jean-Marie Le Goff², Stéphane Marchand-Maillet¹

www.infos-informatique.net/MCCCC32.html

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで 1/57

¹University of Geneva, ²CERN

Plan

- Part I: An introduction on hyper-bag-graphs
- Part II: An application of hb-graphs to general hypergraph e-adjacency tensor

Plan

Part I: An introduction on hyper-bag-graphs

Part II: An application of hb-graphs to general hypergraph e-adjacency tensor

Why hb-graphs?

Research context

PhD started in 10.2016 @ University of Geneva Hypergraph Modeling and Visualisation

of Complex Collaboration Networks

 Done within the Collaboration Spotting project @ CERN
 => enhancing co-occurences in datasets

Figure 1: DataHyperCube: prototype in Ouvrard et al. [2018b]

In project...

- Datasets modeled and stored as labelled graphs.
- **Co-occurences** through a **reference**.
- Multiple facets of dataset can be visualized.

but co-occurences are...

- Bags of elements
- *n*-adic relationships
- if bags reduced to sets: hypergraphs well fitted to model it!

Hypergraphs (as a reminder)

From graphs to hypergraphs

- Hypergraphs = generalisation of graphs to multiple node links
- Hypergraphs introduced by Berge and Minieka [1973].

Definition

Bretto [2013]: A hypergraph \mathcal{H} family of subsets of a vertex set

Elements of family ~ hyperedges.

Two visions

- extension of graphs ~> n-adic relationship view

Multisets I

Definitions

- Multiset: a universe and a multiplicity function $A_m = (A, m)$
- Natural multiset: the range of the multiplicity function is a subset of N.
- In natural multisets: two views:

Support of the multiset A_m^{\star} :

$$A_m^\star = \{ x \in A \colon m(x) \neq 0 \}$$

m-cardinality of a multiset A_m :

$$\#_m A_m = \sum_{x \in A} m(x).$$

Multisets and operations

Let $\mathcal{A} = U_{m_{\mathcal{A}}}$ and $\mathcal{B} = U_{m_{\mathcal{B}}}$ be two msets on the same universe U.

- \mathcal{A} is included in \mathcal{B} ($\mathcal{A} \subseteq \mathcal{B}$) if $\forall x \in U$: $m_{\mathcal{A}}(x) \leq m_{\mathcal{B}}(x)$. In this case: \mathcal{A} is a submset of \mathcal{B} .
- **Union** of \mathcal{A} and \mathcal{B} : mset $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$, universe U,

 $\forall x \in U : m_{\mathcal{C}}(x) = \max\left(m_{\mathcal{A}}(x), m_{\mathcal{B}}(x)\right).$

Intersection of \mathcal{A} and \mathcal{B} : mset $\mathcal{D} = \mathcal{A} \cap \mathcal{B}$, universe U,

 $\forall x \in U : m_{\mathcal{D}}(x) = \min\left(m_{\mathcal{A}}(x), m_{\mathcal{B}}(x)\right).$

Sum of \mathcal{A} and \mathcal{B} : mset $\mathcal{E} = \mathcal{A} \uplus \mathcal{B}$, universe U,

 $\forall x \in U : m_{\mathcal{E}}(x) = m_{\mathcal{A}}(x) + m_{\mathcal{B}}(x).$

- Power multiset of *A*: set $\widetilde{\mathcal{P}}(\mathcal{A})$ of all submsets of *A*.
- More in Singh et al. [2007].

ヘロン A面と A面と A面と

Vector representation

<u>Given</u>: a natural multiset $A_m = (A, m)$ of universe $A = \{\alpha_i : i \in [n]\}$ and multiplicity function m. It yields:

$$A_m = \left\{ \alpha_{i_j}^{m\left(\alpha_{i_j}\right)} : \alpha_{i_j} \in A_m^{\star} \right\}.$$

- Vector representation: $\overrightarrow{A} = (m(\alpha))_{\alpha \in A}$.
- Sum of the elements of \overrightarrow{A} : $\sharp_m A_m$
- |A| elements to be described but only |A^{*}_m| are non-zero
- => useful for building incidence matrix of hb-graphs

Multisets III

<u>Given</u>: a natural multiset $A_m = (A, m)$ of universe $A = \{\alpha_i : i \in [n]\}$ and multiplicity function m. It yields:

$$A_m = \left\{ \alpha_{i_j}^{m\left(\alpha_{i_j}\right)} : \alpha_{i_j} \in A_m^{\star} \right\}.$$

Unnormalised hypermatrix representation

$$\begin{array}{l} \bullet \quad a_{u,i_1\ldots i_r} = 1 \text{ if } \\ \forall j \in \llbracket r \rrbracket : i_j \in \llbracket n \rrbracket \wedge \alpha_{i_j} \in A_m^{\star}. \end{array}$$

$$\blacksquare \sum_{i_1, \dots, i_r \in \llbracket n \rrbracket} a_{u, i_1 \dots i_r} = \frac{r!}{\prod_{\alpha \in A_m^*} m\left(\alpha\right)}.$$

Normalised hypermatrix representation

• $A = (a_{i_1 \dots i_r})_{i_1, \dots, i_r \in \llbracket n \rrbracket}$, symmetric, order $r = \sharp_m A_m$, dimension n $\prod m(\alpha)$ $\blacksquare a_{i_1...i_r} = \frac{\alpha \in A_m^*}{(r-1)!}$ if $\forall j \in \llbracket r \rrbracket : i_j \in \llbracket n \rrbracket \land \alpha_{i_j} \in A_m^\star.$ Other elements are equal to zero. $|\{a_{u,i_1...i_r} \neq 0, i_1, ..., i_r \in [\![n]\!]\}| = r!$ $\boxed{ m(\alpha) }$ $\alpha \in A_m^{\star}$ n^r elements but only one needed $\sum a_{i_1\dots i_r} = r.$ $i_1, \dots i_r \in \llbracket n \rrbracket$, and the set of the s

Hyper-Bag-graph or hb-graph

Hb-graph $\mathcal{H} = (V, E)$: family of multisets $E = (e_i)_{i \in I}^2$ - called **hb-edges** - where the hb-edges have:

- same universe $V = \{v_1, \ldots, v_n\}$, called vertex set.
- support a subset of V.
- each hb-edge has its own multiplicity function $m_e: V \to W$ where $W \subset \mathbb{R}^+$.
- Hb-graph with no repeated hb-edge:

$$\forall i_1 \in I, \forall i_2 \in I : e_{i_1} = e_{i_2} \Rightarrow i_1 = i_2$$

Order of a hb-graph $\mathcal{H}: O(\mathcal{H}) = \sum_{j=1}^{n} \max_{e \in E} (m_e(v_j)).$

Size of a hb-graph: |E|.

Natural hb-graph: when all multiplicity functions have their range included in \mathbb{N}

Hyper-Bag-graph or hb-graph

Support hypergraph <u>H</u>: hypergraph of the support of the multisets

Star of a vertex:
$$\forall x \in V : H(x) = \left\{ e_i^{m_{e_i}(x)} : e_i \in E \land x \in e_i^* \right\}$$
.

m-degree of a vertex: $\deg_m(x) = \#_m H(x)$.

m-range, m-co-range

- **range** of a hb-graph: $r(\mathcal{H})$: range of its support hypergraph $\underline{\mathcal{H}}$.
- **m-range** of a hb-graph: $r_m(\mathcal{H}) = \max_{e \in E} \#_m e$.
- co-range of a hb-graph: r (H): co-range of its support hypergraph <u>H</u>.
- **m-co-range** of a hb-graph: $cr_m(\mathcal{H}) = \min_{e \in E} \#_m e$.

Particular cases

- **k-m-uniform** hb-graph: all its hb-edges of same m-cardinality k.
- k-uniform hb-graph: support hypergraph is k-uniform.
- A hb-graph \mathcal{H} is k-m-uniform if and only if $r_m(\mathcal{H}) = cr_m(\mathcal{H}) = k$.
- A hb-graph \mathcal{H} is k-uniform if and only if $r(\mathcal{H}) = cr(\mathcal{H}) = k$.
- A hypergraph can be seen as a natural hb-graph with multiplicity function ranges in $\{0,1\}$

◆□▶ ◆□▶ ◆ 注▶ ◆ 注▶ 注目 の Q (* 11/57)

Sum of two hb-graphs

Let $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ be two hb-graphs.

- \blacksquare $V_1 \cup V_2$ as vertex set
- $E_1 + E_2$ as hb-edge family: hb-edges are obtained from the hb-edges of E_1 and E_2 with same multiplicity for vertices of V_1 (respectively V_2) but such that for each hyperedge in E_1 (respectively E_2) the universe is extended to $V_1 \cup V_2$ and the multiplicity function is extended such that $\forall v \in V_2 \setminus V_1 : m(v) = 0$ (respectively $\forall v \in V_1 \setminus V_2 : m(v) = 0$)
- $\blacksquare \mathcal{H}_1 + \mathcal{H}_2 = (V_1 \cup V_2, E_1 + E_2)$

Direct sum

- If $E_1 + E_2$ doesn't contain any new pair of repeated hb-edge than the ones already existing in E_1 and those already existing in E_2 : we have a direct sum
- In this case the sum is written $\mathcal{H}_1 \oplus \mathcal{H}_2$.

Incidence

- hb-edges are incident if their intersection is not empty
- Incidence matrix of the hb-graph \mathcal{H} : $H = [m_j(v_i)]_{1 \le i \le n}$. $1 \le j \le p$
- Used in: diffusion by exchange in Ouvrard et al. [2018c]
- Incidence is a pairwise concept: a vertex is incident to a hb-edge.
- The rows allow to see which hb-edges are incident: linked by rows.

Hb-graphs: extending hypergraphs

Photos from https://www.pexels.com/photo/sailboats-racing-163318/ Slide presented at CBMI 2018 La Rochelle

	sunset	boat	ocean	person
	1	0	0	0
	1	0	0	0
6	1	4	0	0
294	1	3	0	3
-	1	1	1	1
	1	2	1	2
	0	28	0	17
	0	1	1	0
5	0	0	1	0

Paths in hb-graphs

Numbering copies

Strict m-path from a vertex x to a vertex y:

- vertex / hb-edge alternation: $x_0e_1x_1 \dots e_sx_s$
- $x_0 = x, x_s = y, x \in e_1$ and $y \in e_s$ and that for all $i \in [s-1], x_i \in e_i \cap e_{i+1}$.
- In number of possible strict m-path: $m_{e_1}(x_0) \prod_{i \in [s-1]} m_{e_i \cap e_{i+1}}(x_i) m_{e_s}(x_s)$

Large m-path from a vertex x to a vertex y:

- same conditions but $\forall i \in [[s-1]], x_i \in e_i \cup e_{i+1}$.
- In number of possible large m-path: $m_{e_1}(x_0) \prod m_{e_i \cup e_{i+1}}(x_i) m_{e_s}(x_s)$

 $i \in [\![s-1]\!]$

Length of a path l(x, y) = s

Almost cycle: m-path with extremities that are different copies of the same object

- Cycle: m-path with extremities that are same copies of the object
- **Distance** from x to y:
 - minimal length d(x, y) of an m-path from x to y if such an m-path exists.
 - If no m-path exist, x and y are said disconnected and $d(x, y) = +\infty$.

Notion of connected hb-graph related to the connection of its support hypergraph

How are hb-graphs useful?

Plan

- Part I: An introduction on hyper-bag-graphs => Do you have any question so far?
- Part II: An application of hb-graphs to general hypergraph e-adjacency tensor

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● の Q ○ 17/57

Why e-adjacency tensor?

Ideas behind

- Ranking of vertices in graphs => random walks
- RW for hypergraphs exist
- Diffusion = local process
 => knowledge of the neighbourhood.
- Study of diffusion process => Laplacian
- Incidence and adjacency matrices keep only pairwise information
- Pairwise adjacency is too restrictive for hypergraphs
- Higher order adjacency requires tensor
- Laplacian tensor is linked to the adjacency tensor
- Adjacency tensor for uniform hypergraph is known Cooper and Dutle [2012]

On adjacency

In graphs

- Two vertices are said adjacent if it exists an edge linking them => pairwise relationship
- Vertices incident to one given edge are said e-adjacent.
 => also pairwise relationship
- e-adjacency and adjacency are equivalent in graphs

Extending to hypergraphs

- k vertices are said k-adjacent if it exists a hyperedge that hold them
 => multi-adic relationship
- Vertices of a given hyperedge are said to be e-adjacent.
 => multi-adic relationship
- \overline{k} -adjacency: maximal k-adjacency that can be found in a given hypergraph
- In k-uniform hypergraph:
 - **\overline{k}**-adjacency is k-adjacency
 - Equivalence \overline{k} -adjacency and e-adjacency.
- In general hypergraphs: the equivalence doesn't hold anymore!

Tensor for general hypergraphs: the art of filling

What about this?

=> We need to store additional information

Symmetric e-adjacency tensor³

Let $\mathcal{H} = (V, E)$ with $V = \{v_1, v_2, ..., v_n\}$ and family $E = \{e_1, e_2, ..., e_p\}$. Let $k_{\max} = \max\{|e_i| : e_i \in E\}$ be the maximum cardinality of the family of hyperedges. The ([Author's note]: **e**-)adjacency hypermatrix of \mathcal{H} written $\mathcal{A}_{\mathcal{H}} = (a_{i_1...i_{k_{\max}}})_{1 \leqslant i_1,...,i_{k_{\max}} \leqslant n}$ is such that for a hyperedge: $e = \{v_{l_1}, ..., v_{l_s}\}$ of cardinality $s \leqslant k_{\max}$.

$$a_{p_1...p_{k_{\max}}} = \frac{s}{\alpha}$$
, where $\alpha = \sum_{\substack{k_1,...,k_s \geqslant 1 \\ \sum k_i = k_{max}}} \frac{k_{\max}!}{k_1!...k_s!}$

with $p_1, ..., p_{k_{\max}}$ chosen in all possible way from $\{l_1, ..., l_s\}$ with at least once from each element of $\{l_1, ..., l_s\}$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ 21/57

³Banerjee et al. [2017]

Layered e-adjacency tensor⁴

Let $\mathcal{H} = (V, E)$ with $V = \{v_1, v_2, ..., v_n\}$ and family $E = \{e_1, e_2, ..., e_p\}$. Let $k_{\max} = \max\{|e_i| : e_i \in E\}$ be the maximum cardinality of the family of hyperedges. The layered e-adjacency hypermatrix of \mathcal{H} written $\mathcal{A}_{\mathcal{H}} = (a_{i_1...i_{k_{\max}}})_{1 \leq i_1,...,i_{k_{\max}} \leq n}$ is such that for each hyperedge: $e = \{v_{l_1}, ..., v_{l_s}\}$ of cardinality $s < k_{\max}$ it is completed in a hyperedge $\overline{e} = \{v_{l_1}, ..., v_{l_s}, y_s, ..., y_{k_{\max}-1}\}$. $a_{\sigma(l_1)...\sigma(l_s)\sigma(n+s)...\sigma(n+k_{\max}-1)} = \frac{1}{(k_{\max}-1)!}$

where $\sigma \in S_{k_{\max}}$.

⁴Ouvrard et al. [2017, 2018a]

Prefix e-adjacency tensor⁵

The ([Author's note]: **prefix e-)adjacency hypermatrix** of a general hypergraph $\mathcal{H} = (V, E)$, with V as vertex set ([Author's note]: identified to $\llbracket n \rrbracket$) and E as hyperedge set, having range $r(\mathcal{H}) = k_{\text{max}}$ is an order k_{max} and dimension |V| hypermatrix with entries:

$$a_{i_1...i_{k_{\mathsf{max}}}} = \begin{cases} \frac{1}{(s-1)!} & i_1 = ... = i_{k-s+1}, \{i_{k-s+1}, ..., i_k\} \in E\\ 0 & \text{otherwise.} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ Q ○ 23/57

⁵Sun et al. [2018] New Published 27.09.2018

Why alternative proposals?

Motivations

- The e-adjacency tensor should be easily interpretable:
 - in term of e- and k-adjacency;
 - in term of the process used to build it.
- There is not a unique way of filling: additional ways require multisets for interpretability => Find other proposals hopefully easier to analyse spectrally.
- Symmetry is a desirable property

Key points of our contribution

- Hb-graphs as extension of hypergraphs
- k-adjacency tensor of a m-uniform hb-graph
- Three e-adjacency tensors in hb-graphs
- Final choice for the e-adjacency tensor

Elementary hb-graphs

Elementary hb-graph and its \overline{k} -adjacency hypermatrix

- **Elementary hb-graph**: hb-graph with only one non repeated hb-edge in its hb-edge family. Typically: $\mathcal{H}_e = (V, (e))$.
- For $\mathcal{H}_e = (V, (e))$:
 - e described uniquely by its hypermatrix representation Q_e .
 - $\blacksquare \mathcal{H}_e \text{ also uniquely described by } Q_e.$
- Let $e = \left\{ v_{j_1}^{m_{j_1}}, \dots, v_{j_k}^{m_{j_k}} \right\}$ be a hb-edge of \mathcal{H} of m-rank r.

Normalised \overline{k} -adjacency hypermatrix of an elementary hb-graph \mathcal{H}_e is the normalised representation of the multiset e:

- Symmetric hypermatrix $Q_e = (q_{i_1...i_r})$ of rank r and dimension n
- only nonzero elements are:

$$q_{\sigma(j_1)^{m_i \sigma(j_1)}, \dots, \sigma(j_{k_i})}^{m_{i \sigma}} {}^{(j_{k_i})} = \frac{m_{ij_1}! \dots m_{ij_{k_i}}!}{(r-1)!}$$

where $\sigma \in S_{\llbracket r \rrbracket}$.

Iterative process on layers

Each hb-graph can be summarized by a polynomial of degree $r_{\mathcal{H}}$:

$$P(\mathbf{z_0}) = \sum_{i=1}^{p} c_{e_i} P_{e_i}(\mathbf{z_0})$$

=
$$\sum_{i=1}^{p} c_{e_i} \frac{r_i!}{m_{ij_1}! \dots m_{ij_{k_i}}!} q_{j_1^{m_i j_1}, \dots, j_{k_i}^{m_i j_{k_i}}} z_{j_1}^{m_{ij_1}} \dots z_{j_{k_i}}^{m_{ij_{k_i}}}$$

 c_{e_i} is a technical coefficient => choosen to retrieve the m-degree of the vertices from the e-adjacency tensor.

m-uniform natural hb-graph

\overline{k} -adjacency hypermatrix

- Let $\mathcal{H} = (V, E)$ be a *r*-m-uniform hb-graph. $V = \{v_i : i \in [n]\}$.
 - each hb-edge in a r-m-uniform hb-graph has same m-cardinality r
 - **Fradjacency hypermatrix of** \mathcal{H} is the hypermatrix $A_{\mathcal{H}} = (a_{i_1...i_r})_{1 \le i_1,...,i_r \le n}$ defined by:

$$A_{\mathcal{H}} = \sum_{i \in \llbracket p \rrbracket} Q_{e_i}$$

where Q_{e_i} is the \overline{k} -adjacency hypermatrix of the elementary hb-graph associated to the hb-edge $e_i = \left\{ v_{j_1}^{m_{ij_1}}, \dots, v_{j_{k_i}}^{m_{ij_{k_i}}} \right\} \in E.$

- The only non-zero elements of Q_{e_i} are the elements of indices obtained by permutation of the multiset $\left\{j_1^{m_{ij_1}}, \ldots, j_{k_i}^{m_{ij_k_i}}\right\}$ and are all equals to $\frac{m_{ij_1}! \ldots m_{ij_{k_i}}!}{(r-1)!}$.
- Remark: when the r-m-uniform hb-graph corresponds to a r-uniform hypergraph => retrieve the result of the degree-normalized tensor of Cooper and Dutle [2012].
- Claim: The *m*-degree of a vertex *v_j* in a *r*-m-uniform hb-graph *H* of *k*-adjacency hypermatrix *A_H* is:

$$\deg_m(v_j) = \sum_{1 \leqslant j_2, \dots, j_r \leqslant n} a_{jj_2\dots j_r}.$$

Elementary operations on hb-graphs I

Elementary operations

- Are needed for building the hb-graph m-uniformisation process
- **Canonical weighting operation:** ϕ_{cw} : $\mathcal{H} = (V, E) \mapsto \mathcal{H}_1 = (V, E, w_1)$ where $\forall e \in E : w_1 (e) = 1$.
- **c-dilatation operation:** $\phi_{c-d} : \mathcal{H}_1 = (V, E, w_1) \mapsto \mathcal{H}_c = (V, E, w_c)$ with $\forall e \in E : w_c (e) = c, c \in \mathbb{R}^{++}$.
- *y*-complemented operation: $\phi_{y\text{-}c}$: $\mathcal{H}_w = (V, E, w) \mapsto \tilde{\mathcal{H}}_{\tilde{w}} = (\tilde{V}, \tilde{E}, \tilde{w})$, where $\tilde{\mathcal{H}}_{\tilde{w}}$ is the *y*-complemented hbgraph of \mathcal{H}_w with:

$$\begin{split} \tilde{V} &= V \cup \{y\}, \\ \tilde{E} &= (\xi \left(e \right))_{e \in E} \text{ where } \xi : E \to \mathcal{M} \left(\tilde{V} \right) \text{ is such that: } \forall e \in E, \\ \xi \left(e \right) &= \left\{ x^{m_{\xi \left(e \right)} \left(x \right)} : x \in \tilde{V} \right\} \in \mathcal{M} \left(\tilde{V} \right), \text{ with } m_{\xi \left(e \right)} \left(x \right) = \begin{cases} m_e(x) & \text{if } x \in e^* \\ r_{\mathcal{H}} - \#_m e & \text{if } x = y \end{cases} \\ \tilde{w} \text{ is such that } \forall e \in E : \tilde{w} \left(\xi(e) \right) = w(e). \end{split}$$

Decomposition operation: $\phi_d : \mathcal{H} \mapsto (\mathcal{H}_i)_{i \in I}$ such that: $\mathcal{H} = \bigoplus_{i \in I} \mathcal{H}_i$ where the \mathcal{H}_i have all same universe and no pair of \mathcal{H}_i have repeated hb-edge.

Elementary operations on hb-graphs II

Elementary operations

■ y^{α} -vertex-increasing operation: $\phi_{y^{\alpha}-v}$: $\mathcal{H} = (V, E, w) \mapsto \mathcal{H}^+ = (V^+, E^+, w^+)$ where \mathcal{H}^+ is the

 $V^+ = V \cup \{y\},$ $E^+ = (\phi(e))_{e \in E} \text{ with the map } \phi: E \to \mathcal{M}(V^+) \text{ such that for all } e \in E,$ $\phi(e) = \left\{ x^{m_{\phi(e)}(x)} : x \in V^+ \right\} \in \mathcal{M}(V^+) \text{ with } m_{\phi(e)}(x) = \begin{cases} m_e(x) & \text{if } x \in e^* \\ \alpha & \text{if } x = y \end{cases}$ $w^+ \text{ is such that } \forall e \in E: w^+(\phi(e)) = w(e).$

Merging operation: $\phi_{\mathsf{m}} : (\mathcal{H}_a, \mathcal{H}_b) \mapsto \widehat{\mathcal{H}}$ where: $\widehat{\mathcal{H}_w} = (\widehat{V}, \widehat{E}, \widehat{w})$ is the merged hb-graph of two weighted hb-graphs $\mathcal{H}_a = (V_a, E_a, w_a)$ and $\mathcal{H}_b = (V_b, E_b, w_b)$

$$\begin{aligned} &\widehat{V} = V_a \cup V_b \\ &\widehat{E} = (\psi(e))_{e \in E_A + E_B} \overset{6}{} \text{ where } \psi : E_A + E_B \to \mathcal{M}\left(\widehat{V}\right) \text{ such that for all } \\ &e \in E_A + E_B, \psi(e) = \left\{ x^{m_{\psi(e)}(x)} : x \in \widehat{V} \right\} \in \mathcal{M}\left(\widehat{V}\right) \text{ with } \\ &m_{\psi(e)}(x) = \begin{cases} m_e(x) & \text{if } x \in e^* \\ 0 & \text{otherwise} \end{cases} \\ &\forall e \in E_a, \, \widehat{w}(e) = w_a(e) \text{ and } \forall e \in E_b, \, \widehat{w}(e) = w_b(e). \end{aligned}$$

 ${}^{6}E_{A} + E_{B}$ is the family obtained with all elements of the family E_{A} and all elements of the family E_{B}

Elementary operations on hb-graphs III

e-adjacency and elementary operations

- Let $\mathcal{H} = (V, E)$ and $\mathcal{H}' = (V', E')$ be two hb-graphs. Let $\phi : \mathcal{H} \mapsto \mathcal{H}'$.
 - φ is said preserving e-adjacency if vertices of V' that are e-adjacent in H' are either e-adjacent vertices in H or the maximal subset of these vertices that are in V are e-adjacent in H.
 - φ is said preserving exactly e-adjacency if vertices that are e-adjacent in H' are e-adjacent in H and reciprocally.

Claim 1:

- The composition of two operations which preserve (respectively exactly) e-adjacency preserves (respectively exactly) e-adjacency.
- The composition of two operations where one preserves exactly e-adjacency and the other preverves e-adjacency preserves e-adjacency.

Claim 2:

- The canonical weighting operation, the *c*-dilatation operation, the merging operation and, the decomposition operation preserve exactly e-adjacency.
- The y-complemented operation and the y^{α} -vertex-increasing operation preserve e-adjacency.

Processes involved for building the e-adjacency tensor

Processes used

Hb-graph m-uniformisation process (Hm-UP): transform:

- **a** hb-graph \mathcal{H} of m-range $r_{\mathcal{H}}$
- into a $r_{\mathcal{H}}$ -m-uniform hb-graph written $\overline{\mathcal{H}}$

Polynomial homogenization process (PHP): homogeneize the hb-graph polynomial

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● の Q ○ 31/57

Principle

Choice of the c_{e_i} done such that the *e*-adjacency hypermatrix $A = (a_{i_1...i_r})_{i_1,...,i_r \in [\![n]\!]}$ allows to retrieve:

i2

the m-degree of the vertices:

$$\sum_{i,i_r \in \llbracket n \rrbracket} a_{ii_2...i_r} = \deg_m(v_i).$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ Q ○ 32/57

the number of hb-edges |E|.

Principle of decomposition

A hb-graph $\mathcal{H} = (V, E)$ decomposed in a family of *r*-m-uniform hb-graphs $(\mathcal{H}_r)_{r \in [r_{\mathcal{H}}]}$.

Quotienting the hb-edges:

- \mathcal{R} be the equivalency relation defined on E the family of hb-edges of \mathcal{H} : $e\mathcal{R}e' \Leftrightarrow \#_m e = \#_m e'.$
- E/\mathcal{R} is the set of classes of hb-edges of same m-cardinality. The elements of E/\mathcal{R} are the sets: $E_r = \{e \in E : \#_m e = r\}$.
- Considering $R = \{r : E_r \in E/\mathcal{R}\}$, it is set $E_r = \emptyset$ for all $r \in \llbracket r_{\mathcal{H}} \rrbracket \setminus R$.

$$\mathcal{H}_r = (V, E_r) \text{ for all } r \in \llbracket r_{\mathcal{H}}$$

=>

$$\mathcal{H} = \bigoplus_{r \in \llbracket r_{\mathcal{H}} \rrbracket} \mathcal{H}_r.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ 33/57

Each \mathcal{H}_r can be associated to a \overline{k} -adjacency tensor \mathcal{A}_r viewed as a hypermatrix $A_{\mathcal{H}_r} = (a_{(r)i_1...i_r})$ of order r, hypercubic and, symmetric of dimension |V| = n.

Principle

- The number of hb-edges is kept constant in the decomposition of a hb-graph in layers.
- The processes involved in the uniformisation processes keep the number of hb-edges constant.

$$\sum_{i_1,\ldots,i_{r_{\mathcal{H}}} \in \llbracket n_1 \rrbracket} a_{i_1\ldots i_{r_{\mathcal{H}}}} = r_{\mathcal{H}} |E|$$

$$\blacksquare \ |E| = \sum_{r=1}^{n} |E_r| = \sum_{r=1}^{n} \frac{1}{r} \sum_{i_1, \dots, i_r \in [\![n]\!]} a_{(r)i_1 \dots i_r}$$

 $\blacksquare \text{ Hence, it follows: } \sum_{i_1,\ldots,i_{r_{\mathcal{H}}} \in \llbracket n_1 \rrbracket} a_{i_1\ldots i_{r_{\mathcal{H}}}} = \sum_{r=1}^n \frac{r_{\mathcal{H}}}{r} \sum_{i_1,\ldots,i_r \in \llbracket n \rrbracket} a_{(r)i_1\ldots i_r}.$

For all $r \in [r_{\mathcal{H}}]$: $c_r = \frac{r_{\mathcal{H}}}{r}$. It is the technical coefficient for the corresponding layer of level r of the hb-graph \mathcal{H} .

Straightforward m-uniformisation

$$\mathcal{H} \xrightarrow{\phi_d} \left(\begin{array}{c} \mathcal{H}_r \xrightarrow{\phi_{cw}} \mathcal{H}_{r,1} \xrightarrow{\phi_{cd}} \mathcal{H}_{r,c_r} \end{array} \right) \xrightarrow{\phi_m} \mathcal{H}_{w,d} \xrightarrow{\phi_{y_1,c}} \tilde{\mathcal{H}}_{w,d}$$

Figure 3: Operations on the original hb-graph to m-uniformize it in the straightforward approach. Parenthesis with vertical dots indicate parallel operations.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ ○ 35/57

The transformation $\phi_s : \mathcal{H} \mapsto \tilde{\mathcal{H}}_{w,d}$ preserves the *e*-adjacency.

Straightforward homogeneisation

Transforming the hb-edge polynomial in a polynomial of degree r_H => details in article
 The hb-graph polynomial P (z₀) = ∑_{i∈[[p]]} c_iP_{ei} (z₀) is transformed into a homogeneous polynomial:

$$R(\mathbf{z_1}) = \sum_{i \in [\![p]\!]} c_i R_{e_i}(\mathbf{z_1}) = \sum_{i \in [\![p]\!]} c_i z_{j_1}^{m_{ij_1}} \dots z_{j_{k_i}}^{m_{ij_{k_i}}} y_1^{m_{in+1}}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○ 36/57

representing the homogenized hb-graph $\overline{\mathcal{H}}$ with attached tensor $\mathcal{R} = \sum_{i=1}^{p} c_{e_i} \mathcal{R}_{e_i}$ where

$$c_{e_i} = rac{r_{\mathcal{H}}}{\#_m e_i}$$
 and $m_{i n+1} = r_{\mathcal{H}} - \sharp_m e_i$.

PHP I (ii)

Straightforward e-adjacency hypermatrix

The straightforward *e*-adjacency hypermatrix of a hb-graph $\mathcal{H} = (V, E)$ is the hypermatrix $A_{str, \mathcal{H}}$ defined by:

$$m{A}_{ ext{str},m{\mathcal{H}}} = \sum_{i \in \llbracket p
rbracket} c_{e_i} m{R}_{e_i}.$$

where for $e_i = \left\{ v_{j_1}^{m_{ij_1}}, \dots, v_{j_{k_i}}^{m_{ij_{k_i}}} \right\} \in E$ the associated hypermatrix is: $R_{e_i} = \left(r_{i_1 \dots i_{r_{\mathcal{H}}}} \right)$, which only non-zero elements are:

$$r_{j_{1}^{m_{ij_{1}}}\dots j_{k_{i}}^{m_{ij_{k_{i}}}}(n+1)^{m_{i}n+1}} = \frac{m_{ij_{1}}!\dots m_{ij_{k_{i}}}!m_{i}n+1}{r_{\mathcal{H}}!}$$

- with $m_{i\,n+1} = r_{\mathcal{H}} - \#_m e_i$ - and the ones with same value and obtained by permutation of the indices and where $c_{e_i} = \frac{r_{\mathcal{H}}}{\#_m e_i}$.

Silo m-uniformisation

$$\mathcal{H} \xrightarrow{\phi_d} \left(\begin{array}{c} \mathcal{H}_r \xrightarrow{\phi_{cw}} \mathcal{H}_{r,1} \xrightarrow{\phi_{c-d}} \mathcal{H}_{r,c_r} \end{array} \right) \xrightarrow{\phi_{m}} \mathcal{H}_{r,c_r} \xrightarrow{\phi_{m}} \mathcal{H}_{r,c_r} \xrightarrow{\phi_{m}} \mathcal{H}_{w}^+ \xrightarrow{\phi$$

Figure 4: Operations on the original hb-graph to m-uniformize it in the silo approach. Parenthesis with vertical dots indicate parallel operations.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ ○ Q ○ 38/57</p>

<u>Claim</u>: The transformation $\phi_s : \mathcal{H} \mapsto \widehat{\mathcal{H}_w}$ preserves the *e*-adjacency.

PHP II (i)

Atta

Silo homogeneization

■ $r_{\mathcal{H}} - 1$ additional variables respectively y_1 to $y_{r_{\mathcal{H}}-1}$.

$$P_{e_i}(z_0) = z_{j_1}^{m_{ij_1}} \dots z_{j_{k_i}}^{m_{ij_{k_i}}} \text{ of } \deg P = \#_m e_i.$$

■ Add y_{#m}e_i with multiplicity m_i #_me_i = r_H - #_me_i to have it of degree r_H.

- $\blacksquare P_{e_i}(z_0) \text{ transformed in } R_{e_i}\left(z_{\#_{\boldsymbol{m}}e_i}\right) = P_{e_i}(z_0) y_{\#_{\boldsymbol{m}}e_i}^{m_{i\,n}+\#_{m}e_i}$
- The only non-zero elements of \mathcal{R}_{e_i} of rank $r_{\mathcal{H}}$ and dimension n+1 are:

$$r_{j_{1}^{m_{ij_{1}}}\dots j_{k_{i}}^{m_{ij_{k_{i}}}}(n+\#_{m}e_{i})^{m_{i}}n+\#_{m}e_{i}}} = \frac{m_{ij_{1}}!\dots m_{ij_{k_{i}}}!m_{i}n_{+\#_{m}e_{i}}!}{r_{\mathcal{H}}!}$$

and the one obtained by permutation of the indices of this first element.

P is transformed into R the homogeneous polynomial attached to the homogeneised hb-graph $\overline{\mathcal{H}}$:

$$R\left(\boldsymbol{z_{r_{\mathcal{H}}-1}}\right) = \sum_{i \in \llbracket p \rrbracket} c_i R_{e_i} \left(\boldsymbol{z_{\#_m}} e_i\right) = \sum_{i \in \llbracket p \rrbracket} c_i z_{j_1}^{m_{i_{j_1}}} \dots z_{j_{k_i}}^{m_{i_{j_{k_i}}}} y_{\#_m}^{m_{i_{n+\#_m}} e_i}$$

ched tensor $\mathcal{R} = \sum_{i \in \llbracket p \rrbracket} c_{e_i} \mathcal{R}_{e_i}$ where: $c_{e_i} = \frac{r_{\mathcal{H}}}{\#_m e_i}$.

<ロト < 母 > < 臣 > < 臣 > 臣 の < で 39/57

PHP II (ii)

Silo e-adjacency hypermatrix

The silo *e*-adjacency hypermatrix of a hb-graph $\mathcal{H} = (V, E)$ is the hypermatrix $A_{sil,\mathcal{H}} = \left(a_{i_1 \dots i_{r_{\mathcal{H}}}}\right)_{i_1,\dots,i_{r_{\mathcal{H}}} \in [\![n]\!]}$ defined by $A_{sil,\mathcal{H}} = \sum_{i \in [\![p]\!]} c_{e_i} R_{e_i}$ and where for $e_i = \left\{ v_{j_1}^{m_{ij_1}}, \dots, v_{j_{k_i}}^{m_{ij_{k_i}}} \right\} \in E$ the associated hypermatrix is: $R_{e_i} = (r_{i_1 \dots i_{r_{\mathcal{H}}}})$, which only non-zero elements are: $r_{j_1^{m_{ij_1}}\dots j_{k_i}^{m_{ij_{k_i}}} (n + \#_m e_i)^{m_i n + \#_m e_i}} = \frac{m_{ij_1}! \dots m_{ij_{k_i}}! m_{i n + \#_m e_i}!}{r_{\mathcal{H}}!}$

and all elements of R_{e_i} obtained by permutation of the indices and with:

$$m_{i\,n+\#_m e_i} = r_{\mathcal{H}} - \sum_{l \in \llbracket k_i \rrbracket} m_{i\,j_l},$$

and where:

$$c_{e_i} = \frac{\frac{7\pi}{\#_m e_i}}{\frac{1}{\#_m e_i}}.$$
In this case, $A_{\text{sil},\mathcal{H}} = \sum_{r \in \llbracket r\mathcal{H} \rrbracket} c_r \sum_{e_i \in \{e: \#_m e=r\}} R_{e_i}$ where $c_r = \frac{r\mathcal{H}}{r}$.

Hm-UP III

Layered m-uniformisation

Figure 5: Operations on the original hb-graph to m-uniformize it in the layered approach. Parenthesis with vertical dots indicate parallel operations.

<u>Claim</u>: The transformation $\phi_s : \mathcal{H} \mapsto \widehat{\mathcal{H}_w}$ preserves the *e*-adjacency.

PHP III (i)

Layered homogenization

$$r_{(r_{\mathcal{H}} - \#_{m}e_{i})j_{1}^{m_{ij_{1}}}...j_{k_{i}}^{m_{ij_{k_{i}}}}[n + \#_{m}e_{i}]^{1}...[n + r_{\mathcal{H}} - 1]^{1}} = \frac{m_{ij_{1}}!...m_{ij_{k_{i}}}!}{r_{\mathcal{H}}!}$$

and the one obtained by permutation $R\left(z_{r_{H}-1}\right)$ is an homogeneous polynomial representing $\overline{\mathcal{H}}$

PHP III (ii)

Layered homogenization

The layered *e*-adjacency tensor of a hb-graph $\mathcal{H} = (V, E)$ is the tensor $\mathcal{A}_{\text{lay}}(\mathcal{H}) = (a_{i_1...i_{r_{\mathcal{H}}}})_{1 \leq i_1,...,i_{r_{\mathcal{H}}} \leq n}$ defined by:

$$\mathcal{A}_{\mathsf{lay}}\left(\mathcal{H}\right) = \sum_{i \in \llbracket p \rrbracket} c_{e_i} \mathcal{R}_{(r_{\mathcal{H}} - \#_m e_i)e_i}$$

where for $e_i = \left\{ v_{j_1}^{m_{ij_1}}, \dots, v_{j_{k_i}}^{m_{ij_{k_i}}} \right\} \in E$ the associated tensor is:

$$\mathcal{R}_{(r_{\mathcal{H}} - \#_m e_i)e_i} = \left(r_{(r_{\mathcal{H}} - \#_m e_i)i_1 \dots i_{r_{\mathcal{H}}}} \right),$$

which only non-zero elements are:

$$r_{(r_{\mathcal{H}} - \#_{m}e_{i})j_{1}^{m_{ij_{1}}} \dots j_{k_{i}}^{m_{ij_{k_{i}}}} [n + \#_{m}e_{i}]^{1} \dots [n + r_{\mathcal{H}} - 1]^{1}} = \frac{m_{ij_{1}}! \dots m_{ij_{k_{i}}}!}{r_{\mathcal{H}}!}$$

and all elements of \mathcal{R}_{e_i} with indices obtained by permutation and where: $c_{e_i} = \frac{r_{\mathcal{H}}}{\#_m e_i}$.

$$\textbf{A}_{\mathsf{lay}}\left(\mathcal{H}\right) \mathsf{can} \mathsf{ also be written: } \mathcal{A}_{\mathsf{lay}}\left(\mathcal{H}\right) = \sum_{r \in \llbracket r \mathcal{H} \rrbracket} c_r \sum_{e_i \in \{e: \#_m e = r\}} \mathcal{R}_{e_i}, \mathsf{where } c_r = \frac{r \mathcal{H}}{r}.$$

Eigenvalues

 $\lambda \in \mathbb{C}$ is an **eigenvalue** of \mathcal{A} if it exists a nonzero vector $x \in \mathbb{C}^n$ such that:

$$\forall i \in \llbracket 1, n \rrbracket, \left(\mathcal{A} x^{m-1} \right)_i = \lambda x_i^{m-1} \tag{1}$$

- x is called an eigenvector of A associated with the eigenvalue λ
- (x, λ) is called an **eigenpair** of A.
- spectrum of A: set of all eigenvalues of A
- **spectra radius of** A: $\rho(A)$: largest modulus of all eigenvalues
- H-eigenvalue:
 - eigenvalue λ of \mathcal{A} with real eigenvector x associated to it.
 - \blacksquare x is called in this case an H-eigenvector.
- Theorem: Let $\mathcal{A} \in T_{m,n}$ be a nonnegative tensor. Then \mathcal{A} has at least one H-eigenvalue and $\lambda_{H_{\max}}$ (\mathcal{A}) = ρ (\mathcal{A}). Furthermore $\lambda_{H_{\max}}$ (\mathcal{A}) has a non-negative H-eigenvector.

Figure 6: Different classes of tensors

Aim

Desirable that for constructed tensors:

- the spectral radius is positive
- there is a unique positive H-eigenvector (up to a multiplicative constant) associated to it

=> ensured for strongly non-negative tensor

Results on the constructed tensors

First spectral result

<u>Claim</u>: The *e*-adjacency tensor $\mathcal{A}_{\mathcal{H}} = (a_{i_1 \dots i_{k_{\max}}})$ of a general hb-graph $\mathcal{H} = (V, E)$ has its eigenvalues λ such that: (2)

$$|\lambda| \leqslant \max\left(\Delta, \Delta^{\star}\right) + r_{\mathcal{H}}$$

where
$$\Delta = \max_{i \in \llbracket n \rrbracket} (d_i)$$
 and $\Delta^{\star} = \max_{i \in \llbracket n \measuredangle \rrbracket} (d_{n+i})$

Remark

In the straightforward approach:

$$\Delta^{\star} = \deg_{m} (N_{1}) = \sum_{j \in [\![r_{\mathcal{H}} - 1]\!]} (r_{\mathcal{H}} - j) |\{e : \#_{m}e = j\}|$$

In the silo approach: $\Delta^{\star} = \max_{j \in [[r_{\mathcal{H}} - 1]]} (\deg_m(N_j)) = \max_{j \in [[r_{\mathcal{H}} - 1]]} ((r_{\mathcal{H}} - j) | \{e : \#_m e = j\} |)$ In the layered approach:

$$\Delta^{\star} = \max_{j \in \llbracket r_{\mathcal{H}} - 1 \rrbracket} (\deg_m(N_j)) = \max_{j \in \llbracket r_{\mathcal{H}} - 1 \rrbracket} (|\{e : \#_m e \leqslant j\}|) = |\{e : \#_m e \leqslant r_{\mathcal{H}} - 1\}|$$

The values of Δ don't change whatever the approach taken is.

Results on the constructed tensors

Classification of tensors

<u>Claim</u>: Let $\mathcal{H} = (V, E)$ be a hb-graph which is not m-uniform and where $\bigcup_{e \in E} e^* = V$.

If ${\mathcal H}$ is connected then its straightforward e-adjacency tensor is symmetric nonnegative weakly irreducible.

- Proof: cf article
- To ensure weak irreducibility, the special vertex should be added to each hyperedge at least once.
- As a consequence, the spectral radius of this tensor is positive and associated to a unique positive Perron vector (up to a scaling factor)
- Claim: The three e-adjacency tensors built for hb-graphs are nontrivially nonnegative symmetric tensors when the hb-graph is connected and that the union of the support of hb-edges covers the vertex set.
- Proof: They have principal subtensors that are weakly irreducible, hence strictly non negative
- As a consequence the spectral radii of those tensors are positive.

Details

	$\mathcal{A}_{str}\left(\mathcal{H} ight)$	$\mathcal{A}_{sil}\left(\mathcal{H} ight)$	$\mathcal{A}_{lay}\left(\mathcal{H} ight)$
Order	$r_{\mathcal{H}}$	$r_{\mathcal{H}}$	$r_{\mathcal{H}}$
Dimension	n + 1	$n + r_{\mathcal{H}} - 1$	$n + r_{\mathcal{H}} - 1$
Total number of elements	$(n+1)^{r\mathcal{H}}$	$(n+r_{\mathcal{H}}-1)^{r_{\mathcal{H}}}$	$(n+r_{\mathcal{H}}-1)^{r_{\mathcal{H}}}$
Total number of elements	$(n+1)^{r\mathcal{H}}$	$(n+r_{\mathcal{H}}-1)^{r_{\mathcal{H}}}$	$(n+r_{\mathcal{H}}-1)^{r_{\mathcal{H}}}$
potentially used by the way			
the tensor is build			
Number of repeated elements per hb-edge $e_j = \left\{ v_{i_1}^{m_{j_{i_1}}}, \dots, v_{i_j}^{m_{j_{i_j}}} \right\}$	$\frac{r_{\mathcal{H}}!}{m_{ji_1}!\dots m_{ji_j}!n_j!}$ with $n_j = r_{\mathcal{H}} - \#_m e_j$	$\frac{r_{\mathcal{H}}!}{m_{ji_1}!\dots m_{ji_j}!n_{jk}!}$ with $n_{jk} = r_{\mathcal{H}} - \#_m e_j$	$\frac{r_{\mathcal{H}}!}{m_{ji_1}!\dots m_{ji_j}!}$
Number of elements to be	Constant	Constant	Constant
filled per hyperedge of size	1	1	1
s before permutation			
Number of elements to be	E	E	E
described to derived the			
tensor by permutation of			
indices			

Details

	$\mathcal{A}_{str}\left(\mathcal{H}\right)$	$\mathcal{A}_{\text{sil}}\left(\mathcal{H} ight)$	$\mathcal{A}_{lay}\left(\mathcal{H} ight)$
	Dependent of hb-edge	Dependent of hb-edge	Dependent of hb-edge
Value of elements of a hyperedge	$\frac{\underset{m_{ji_1}!\ldots m_{ji_j}!n_j!}{m_{ji_1}!\ldots m_{ji_j}!n_j!}}{(r_{\mathcal{H}}-1)!}$	$\frac{\underset{m_{ji_1}!\ldots m_{ji_j}!n_{jk}!}{m_{ji_1}!\ldots m_{ji_j}!n_{jk}!}}{(r_{\mathcal{H}}-1)!}$	$\frac{\underset{m_{ji_1}! \dots m_{ji_j}!}{m_{ji_1}! \dots m_{ji_j}!}}{(r_{\mathcal{H}} - 1)!}$
Symmetric	Yes	Yes	Yes
Reconstructivity	Straightforward: delete	Straightforward: delete	Straightforward: delete
	special vertices	special vertices	special vertices
Nodes degree	Yes, but not straightforward	Yes	Yes
	Special vertex	Special vertices	Special vertices
Spectral analysis	increases the amplitude	increase the amplitude	increase the amplitude
	of the bounds	of the bounds	of the bounds
Interpretability of the tensor	Yes	Yes	Yes
in term of hb-graph			

Definition

The *e*-adjacency tensor of a hypergraph $\mathcal{H} = (V, E)$ having maximal cardinality of its hyperedges k_{\max} is the tensor $\mathcal{A}(\mathcal{H}) = \left(a_{i_1 \dots i_{r_{\mathcal{H}}}}\right)_{1 \leqslant i_1, \dots, i_{r_{\mathcal{H}}} \leqslant n}$ defined by: $\mathcal{A}(\mathcal{H}) = \sum_{i \in \llbracket p \rrbracket} c_{e_i} \mathcal{R}_{e_i}$

and where for $e_i = \left\{ v_{j_1}, \dots, v_{j_{k_i}} \right\} \in E$ the associated tensor is: $\mathcal{R}_{e_i} = \left(r_{i_1 \dots i_{r_{\mathcal{H}}}} \right)$, which only non-zero elements are:

$$r_{j_1\dots j_{k_i}(n+k_i)^{k_{\max}-k_i}} = \frac{(k_{\max}-k_i)}{k_{\max}!}$$

and all elements of \mathcal{R}_{e_i} obtained by permuting

$$j_1 \dots j_{k_i} (n+k_i)^{k_{\max}-k_i}$$

and where:

$$c_{e_i} = \frac{k_{\max}}{k_i}$$

Comparison with existing tensor

	$\mathcal{B}_{\mathcal{H}}$	$\mathcal{S}_{\mathcal{H}}$	$\mathcal{A}(\mathcal{H})$
Order	k_{\max}	k_{\max}	kmax
Dimension	n	n	$n + k_{max} - 1$
Total number of elements	$n^{k_{\max}}$	$n^{k_{\text{max}}}$	$(n + k_{\max} - 1)^{k_{\max}}$
Total number of elements potentially	$n^{k_{\text{max}}}$	$n^{k_{\max}}$	$(n + k_{\text{max}} - 1)^{k_{\text{max}}}$
used by the way the tensor is build			
Number of non-nul elements for a given hypergraph	$\begin{split} \sum_{s=1}^{k_{\max}} \alpha_s \left E_s \right \text{ with } \\ \alpha_s = p_s \left(k_{\max} \right) \frac{k_{\max}!}{k_1! k_s!} \end{split}$	$\sum_{s=1}^{k_{\max}} s! \left E_s \right $	$\begin{split} \sum_{s=1}^{k_{\max}} \alpha_s \left E_s \right \text{ with } \\ \alpha_s &= \frac{k_{\max}!}{k_1! \dots k_s! n_s!} \text{ with } \\ n_s &= k_{\max} - s \end{split}$
Number of repeated elements per hyperedge of size s	$\frac{k_{\max}!}{k_1!k_s!}$	s!	$\frac{k_{\max}!}{k_1!\dots k_s!n_s!} \text{ with } \\ n_s = k_{\max} - s$
Number of elements to be filled per hyperedge of size <i>s</i> before permutation	Varying $p_{s}\left(k_{ ext{max}} ight)$	Varying <i>s</i> if prefix is considered as nonpermuting part	Constant 1
Number of elements to be described to derived the tensor by permutation of indices	$\sum_{s=1}^{k_{\max}} p_s\left(k_{\max}\right) E_s $	$\sum_{s=1}^{k_{\max}} s \left E_s \right $	E

Comparison with existing tensor

	$\mathcal{B}_{\mathcal{H}}$	$\mathcal{S}_{\mathcal{H}}$	$\mathcal{A}(\mathcal{H})$
	Dependent of hyperedge	Dependent of hyperedge	Dependent of
Value of elements of a hyperedge	composition	composition	hyperedge size
	<u></u>	1	$\frac{(k_{\max} - s)!}{(l - s)!}$
	α _s	(s-1)!	$s(k_{max} - 1)!$
Beconstructivity	Need computation of	Need computation of	Straightforward: delete
ricconstructivity	duplicated vertices	duplicated vertices	special vertices
Nodes degree	Yes	Yes	Yes
			Special vertices
Spectral analysis	Yes	Yes	increase the amplitude
			of the bounds
	Nonnegative, symmetric,	Nonnegative,	Nennegative
Classification	weakly irreducible if	weakly irreducible if	Nonnegative,
Classification	hypergraph connected and	hypergraph connected and	symmetric, nonunvially
	$\bigcup e = V$	e = V	nonnegative
	$e \in E$	$e \in E$	
Interpretability of the tensor in term of	No / No	No / No	No / Yes
hypergraph / hb-graph			

Several questions remain

- What is the impact of the proposed tensors on spectral hypergraph theory?
- What is hb-graph spectral theory?
- Can we use hb-graph e-adjacency tensor for diffusion?
- What is the gain of moving from the incident matrix to the e-adjacency hypermatrix?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ○ ○ 53/57

Thank you for your attention !

- Anirban Banerjee, Arnab Char, and Bibhash Mondal. Spectra of general hypergraphs. *Linear Algebra and its Applications*, 518:14–30, 2017.
- Claude Berge and Edward Minieka. *Graphs and hypergraphs*, volume 7. North-Holland publishing company Amsterdam, 1973.
- Alain Bretto. Hypergraph theory. *An introduction. Mathematical Engineering. Cham: Springer*, 2013.
- Joshua Cooper and Aaron Dutle. Spectra of uniform hypergraphs. *Linear Algebra and its Applications*, 436(9):3268–3292, 2012.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stephane Marchand-Maillet. Adjacency and tensor representation in general hypergraphs part 1: e-adjacency tensor uniformisation using homogeneous polynomials. *arXiv* preprint arXiv:1712.08189, 2017.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stephane Marchand-Maillet. On adjacency and e-adjacency in general hypergraphs: Towards a new e-adjacency tensor. *arXiv preprint arXiv:1809.00162*, 2018a.

- Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand-Maillet. A hypergraph based framework for modelisation and visualisation of high dimension multi-facetted data. *Soon on Arxiv*, 2018b.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stephane Marchand-Maillet. Diffusion by exchanges in hb-graphs: Highlighting complex relationships. *CBMI Proceedings*, 2018c.
- D Singh, A Ibrahim, T Yohanna, and J Singh. An overview of the applications of multisets. *Novi Sad Journal of Mathematics*, 37(3):73–92, 2007.
- Lizhu Sun, Jiang Zhou, and Changjiang Bu. Spectral properties of general hypergraphs. *Linear Algebra and its Applications*, 2018.
- Apostolos Syropoulos. Mathematics of multisets. In *Workshop on Membrane Computing*, pages 347–358. Springer, 2000.

Multisets IV

<u>Given</u>: a natural multiset $A_m = (A, m)$ of universe $A = \{\alpha_i : i \in [n]\}$ and multiplicity function \overline{m} .

An other definition

- Definition in Syropoulos [2000]: $< A_0, \rho >$
 - A_0 is the set of all instances (including copies) of A_m
 - Equivalency relation ρ where:

 $\forall x \in A_0, \forall x' \in A_0: \ x\rho x' \Leftrightarrow \exists ! c \in A: x\rho c \land x'\rho c.$

- Also A_0/ρ is isomorphic to A
- $\forall \overline{x} \in A_0/\rho, \exists ! c \in A : |\{x : x \in \overline{x}\}| = m(c) \land \forall x \in \overline{x} : x\rho c.$
- A_0 is called a **copy-set** of the multiset A_m .

Remark

A copy-set for a given multiset is not unique.

Sets of equivalency classes of two couples < A₀, ρ > and < A'₀, ρ' > of a given multiset are isomorphic.

Numbered-copy-hypergraph

Numbering copies

- In natural hb-graphs:
 - vertices in a hb-edge with multiplicities greater than 1 = copies of the original vertex
 - idea: numbering the copies

Numbered copy-set of a natural multiset $A_m = \left\{ x_i^{m_i} : i \in [\![n]\!] \right\}$ is the copy-set $\breve{A_m} = \left\{ [x_{ij}]_{m_i} : i \in [\![n]\!] \right\}$ where:

$$[x_{i j}]_{m_i} = \left\{ x_{i 1}, ..., x_{i m_i} \right\} \text{ copies of } x_i$$

ij = copy number of the element x_i .

Maximum multiplicity function of a hb-graph: $\forall v \in V : m(v) = \max_{e \in F} m_e(v)$.

Numbered-copy-hypergraph of $\mathcal{H}: \mathcal{H}_0 = (\check{V}, E_0)$ where $E_0 = \{e_{k,0}: k \in \llbracket p \rrbracket\}$:

Vertex set: Numbered-copy-set of the multiset $\left\{ v_i^{m(v_i)} : i \in [n] \right\}$:

$$\breve{V} = \left\{ \left[v_{i\,j} \right]_{m(v_i)} : i \in \llbracket n \rrbracket \right\}.$$

Each hb-edge $e_k = \left\{ v_{i_j}^{m_k i_j} : j \in [\![k]\!] \land i_j \in [\![n]\!] \right\}$ is associated to a copy-set / equivalency relation $\langle e_k _0, \rho_k \rangle$ which elements are in \breve{V} with copy number as small as possible for each vertex in e_k .

Claim: A numbered-copy-hypergraph is unique for a given hb-graph.