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Two talks in one

B Part I: An introduction on hyper-bag-graphs
B Part lI: An application of hb-graphs to general hypergraph e-adjacency tensor



Focusing on hb-graphs

B Part I: An introduction on hyper-bag-graphs
u



Why hb-graphs

Research context

B PhD started in 10.2016 @ University of
Geneva
Hypergraph Modeling and Visualisation
of Complex Collaboration Networks

B Done within the Collaboration Spotting

project @ CERN
=> enhancing co-occurences in datasets

In project...

B Datasets modeled and stored as
labelled graphs.

B Co-occurences through a reference.

B Multiple facets of dataset can be B if bags reduced to sets:
visualized. ~ hypergraphs well fitted to model it!

Figure 1: DataHyperCube: prototype in Ouvrard
et al. [2018b]

but co-occurences are...

B Bags of elements
B n-adic relationships

B otherwise we need families of multisets
~~ hb-graphs are needed



Hypergraphs (as a reminder)

From graphs to hypergraphs

Bretto [2013]:
. A hypergraph H family of subsets of a vertex
XV set
\ Elements of family ~ hyperedges.

2 xv
e N
\ v, %V3 @ WO VviISIONS
\_/\ B set of elements of power set of nodes
XV, ~ set view

v - W extension of graphs ~ n-adic
relationship view

B Hypergraphs = generalisation of graphs
to multiple node links

B Hypergraphs introduced by Berge and
Minieka [1973].



Multisets |
Multisets and operations

B Multiset: a universe and a multiplicity

function A, = (A, m)
B Natural multiset: the range of the
multiplicity function is a subset of N.
B In natural multisets: two views:

B weighted set:
A’"L = {x’inl LICRON) x:nnn

m collection of objects

LlyeeyTlyee 3 Tny .-y, Tn
—— ——
m1 times my, times

B Support of the multiset A%, :
Ay, ={z € A: m(z) # 0}
B m-cardinality of a multiset A,,:

HmAm = Z m(z).

TEA

Let A = Unm , and B = Up,, be two msets on
the same universe U.

B Aisincluded in B (A C B) if Vx € U:

ma(z) < mp(z).
In this case: A is a submset of B.

Union of A and B: msetC = AU B,
universe U,

Vo € U : me(x) = max (m4(x), mp(x)) .

Intersection of A and B: mset
D = AN B, universe U,

Vaz € U : mp(z) = min (m 4 (z), mg(x)) .

Sum of Aand B: mset £ = AW B,
universe U,

Ve € U : mg(x) = ma(z) + mp(z).

Power multiset of A: set P(A) of all
submsets of A.

More in Singh et al. [2007].



Multisets Il

Vector representation

Given: a natural multiset A,,, = (A, m) of universe A = {«; : ¢ € [n]} and multiplicity function
m. It yields:
Am:{ocij ’ :Olij EA;L}

Vector representation: A= (m (@) pea -

Sum of the elements of Z: B Am
|A| elements to be described but only | A%, | are non-zero
=> useful for building incidence matrix of hb-graphs



Multisets Il

Given: a natural multiset A,,, = (A, m) of universe A = {«; : 7 € [n]} and multiplicity function

m. It yields:
Ap = {am<a7]) tay; € A’;n} .

]

Unnormalised hypermatrix Normalised hypermatrix

representation

representation

m A, = (au,ilwr)h,wire[[n]], symmetric, m A= (ai1~~h)z‘1,..‘,ire[[n1]’ symmetric,

order: r = fiy, Am, dimension n
u Ay iy .ip — 1if

Vji€r]:ij € [n] Aoy, € AY,.
B Other elements are zero.

] ‘{au,ilu.ir # Ovilv "'7i7' € IIn]]}‘ =
7!

[[ m(

aEAY,
B n” elements but only one needed

r!
u > Quiy..iy =

i1,..ir€[n] H m(a)

order r = #,, Am,, dimension n

[T m()

a€A¥

Qjq i = W if

Vi €r] 45 € [n] Ay € A,

Other elements are equal to zero.

Hawiy...ip 7#0,81,-50r € [n]}| =
r!

[T m@

acAr,
n" elements but only one needed

Ay .. i — T
i1, pir €[N



Hb-graphs |

Hyper-Bag-graph or hb-graph

B Hb-graph H = (V, E): family of multisets £ = (ei)ielz— called hb-edges - where the
hb-edges have:

B same universe V = {v1,...,vn}, called vertex set.
B support a subset of V.
m each hb-edge has its own multiplicity function m. : V. — W where W C R*.

B Hb-graph with no repeated hb-edge:

Vip € I,Vig € I : €i, = €y = i1 = i2
B Order of a hb-graph #: O (H) = > max (me (v)) -
j=1°€

B Size of a hb-graph: |E|.
W Natural hb-graph: when all multiplicity functions have their range included in N

21 =[p]



Hb-graphs I
Hyper-Bag-graph or hb-graph

B Support hypergraph 7{: hypergraph of the support of the multisets

ey ()

lStarofavertex:Ver:H(x):{e :eiGE'/\mEe;‘}.

B m-degree of a vertex: deg,,, () = #m H(x).

m-range, m-co-range

range of a hb-graph: r (#): range of its support hypergraph #.
m-range of a hb-graph: r,, (H) = mag#me.
ec
co-range of a hb-graph: r (#): co-range of its support hypergraph #.
m-co-range of a hb-graph: cry, (H) = mig#me.
ee



Hb-graphs Il

Particular cases

B k-m-uniform hb-graph: all its hb-edges of same m-cardinality &.

B k-uniform hb-graph: support hypergraph is k-uniform.

B A hb-graph H is k-m-uniform if and only if 7, () = crm (H) = k.

B A hb-graph H is k-uniform if and only if r (H) = cr (H) = k.

B A hypergraph can be seen as a natural hb-graph with multiplicity function ranges in {0, 1}



Hb-graphs IV

Sum of two hb-graphs
Let #1 = (Vi, E1) and Ha = (Va, E2) be two hb-graphs.

B Vi U V> as vertex set

B FE; + E»> as hb-edge family: hb-edges are obtained from the hb-edges of E; and E5 with
same multiplicity for vertices of V; (respectively V2) but such that for each hyperedge in E;
(respectively E9) the universe is extended to V4 U V» and the multiplicity function is
extended such that Vv € Vo\Vi : m (v) = 0 (respectively Vv € V1\Va : m (v) = 0)

B H,+Ho = (V1UVa, Eq1 + E3)

Direct sum

W If E; + E9 doesn’t contain any new pair of repeated hb-edge than the ones already existing
in Eq and those already existing in Eo: we have a direct sum

M In this case the sum is written 1 & H.



Incidence matrix of a hb-graph

Incidence

B hb-edges are incident if their intersection is not empty

B Incidence matrix of the hb-graph #: H = [m; (vi)]i<icn-
1<j<p

B Used in: diffusion by exchange in Ouvrard et al. [2018c]

B Incidence is a pairwise concept: a vertex is incident to a hb-edge.

B The rows allow to see which hb-edges are incident: linked by rows.



Hb-graphs: extending hypergraphs

Photos from https://www.pexels.com/photo/sailboats-racing-163318/

Slide presented at CBMI 2018 La Rochelle

sunset | boat person
= | 0
= | 0
B | 0
=i 1 3 3
- 1 1 1
= . 2
—
| 0 28 17
| o | 0
-
-~ 0 0 0



https://www.pexels.com/photo/sailboats-racing-163318/

Paths in hb-graphs

Numbering copies

B Strict m-path from a vertex z to a vertex y:

B vertex / hb-edge alternation: zpeiz; ... eszs

B =zx2s=y,zE€e andy € esandthatforalli € [s — 1], z; €e; Neit1.

B number of possible strict m-path: me; (zo) [[ Meine;yq (Ti) me, (2s)
ie[s—1]

B Large m-path from a vertex z to a vertex y:

B same conditions but Vi € [s — 1], z; € e; U e;41.
B number of possible large m-path: me; (z0) [  me;ueiry (i) me, (zs)
i€[[s—1]

B Length of a path i(z,y) = s
B Almost cycle: m-path with extremities that are different copies of the same object
B Cycle: m-path with extremities that are same copies of the object
B Distance from z to y:
H minimal length d(z, y) of an m-path from z to y if such an m-path exists.
| |f no m-path exist, z and y are said disconnected and d(z,y) = +oo.
B Notion of connected hb-graph related to the connection of its support hypergraph



How are hb-graphs useful?

Visualisation of exchange-based diffusion

Applications

Figure 2: From Ouvrard et al. [2018c] ©) |IEEE 2018

On example

W Diffusion in
hb-graphs and RW
=> see Ouvrard et al.
[2018c]

B e-adjacency
hypermatrix of
hypergraphs => see
next part

B 548 vertices
B 300 hb-edges
W 5 groups

W 10 vertices in
between the 5 groups



Focusing on e-adjacency tensor

|
=> Do you have any question so far?

B Part lI: An application of hb-graphs to general hypergraph e-adjacency tensor



Why e-adjacency tensor?

Ideas behind

B Ranking of vertices in graphs
=> random walks

B RW for hypergraphs exist

B Diffusion = local process
=> knowledge of the neighbourhood.

B Study of diffusion process => Laplacian

B Incidence and adjacency matrices keep
only pairwise information

B Pairwise adjacency is too restrictive for
hypergraphs
B Higher order adjacency requires tensor

B Laplacian tensor is linked to the
adjacency tensor

B Adjacency tensor for uniform hypergraph
is known Cooper and Dutle [2012]




On adjacency

In graphs

B Two vertices are said adjacent if it exists an edge linking them

=> pairwise relationship

Vertices incident to one given edge are said e-adjacent.
=> also pairwise relationship

e-adjacency and adjacency are equivalent in graphs

Extending to hypergraphs

k vertices are said k-adjacent if it exists a hyperedge that hold them
=> multi-adic relationship

Vertices of a given hyperedge are said to be e-adjacent.
=> multi-adic relationship

k-adjacency: maximal k-adjacency that can be found in a given hypergraph

In k-uniform hypergraph:

m k-adjacency is k-adjacency
B Equivalence k-adjacency and e-adjacency.

In general hypergraphs: the equivalence doesn’t hold anymore!



Tensor for general hypergraphs: the art of filling

What about this?

s e ®

=> We need to store additional information



Existing e-adjacency tensor of a hypergraph |

Symmetric e-adjacency tensor®

Let H = (V, E) with V = {v1, va, ..., vp} and family E = {e1, e2, ...,ep}.
Let kmax = max {|e;| : e; € E} be the maximum cardinality of the family of hyperedges.
The ([Author’s note]: e-)adjacency hypermatrix of 7 written

Ay = (ail.”ikmax D such that for a hyperedge: e = {vll,...,vls} of
cardinality s < kmax-
IPL Pl = 50 WHOTE @ = kb k!
ki, ks>l

Z ki=kmax

with p1, ..., Pk, Chosen in all possible way from {i1, ..., [s} with at least once from each element
of {ll, c00g) ls}.

3Banerjee et al. [2017]



Existing e-adjacency tensor of a hypergraph Il

Layered e-adjacency tensor*

Let H = (V, E) with V = {v1, va, ..., vp} and family E = {e1, e2, ...,ep}.
Let kmax = max {|e;| : e; € E} be the maximum cardinality of the family of hyperedges.

The layered e-adjacency hypermatrix of H written A4, = (ail_ is such

kmax L oo Tkmax sn

that for each hyperedge: e = {vll s ’UZS} of cardinality s < kmax it is completed in a hyperedge
e= {vll y oy Ulgs Ysy ooey ykmaxfl}-

1
A5 (11)...0(ls)o(n+s)...0(n+kmax—1) — m

where o € Skay-

4Quvrard et al. [2017, 2018a]



Existing e-adjacency tensor of a hypergraph |l

Prefix e-adjacency tensor®

The ([Author’s note]: prefix e-)adjacency hypermatrix of a general hypergraph H = (V, E), with
V as vertex set ([Author’s note]: identified to [r]) and E as hyperedge set, having range
7 (H) = kmax is an order kmax and dimension |V'| hypermatrix with entries:

1 . . . .
) 1= =ik—st1,{lk—st1, ik} EE
@iy gy

(s=1)!
0 otherwise.

5Sun et al. [2018] New Published 27.09.2018



Why alternative proposals?

B The e-adjacency tensor should be easily interpretable:
| in term of e- and k-adjacency;
B in term of the process used to build it.
B There is not a unique way of filling: additional ways require multisets for interpretability
=> Find other proposals hopefully easier to analyse spectrally.
B Symmetry is a desirable property

Key points of our contribution

B Hb-graphs as extension of hypergraphs

B k-adjacency tensor of a m-uniform hb-graph
B Three e-adjacency tensors in hb-graphs

B Final choice for the e-adjacency tensor



Elementary hb-graphs

Elementary hb-graph and its k-adjacency hypermatrix

B Elementary hb-graph: hb-graph with only one non repeated hb-edge in its hb-edge family.
Typically: He = (V, (e))
B For He = (V, (e)) :
B e described uniquely by its hypermatrix representation Q.
H 7. also uniquely described by Q.
B lete= {v;?“ . ,v;Zj’“ } be a hb-edge of # of m-rank r.
Normalised k-adjacency hypermatrix of an elementary hb-graph #{. is the normalised
representation of the multiset e:

B symmetric hypermatrix Q. = (qi, ...i,.) of rank » and dimension n
B only nonzero elements are:

mijq .. mi]-ki !

oG, a(ng) () (r— D!

where o € Sp,p.

B Claim: Let # = (V, E) be a hb-graph with no repeated hb-edge. V' = {v; : 7 € [n]}.
H= P He, He = (Vi (e))
ecE




Hb-graph polynomial

Iterative process on layers

B Each hb-graph can be summarized by a polynomial of degree r4,:

p

P(z0) = ) cePe(20)

=1

. . gl q ST Zmijkq‘,

= E e; — My T TR T
— mljll"’mwki! 7 l’m’]ki i ky
i=

=l

W c., is a technical coefficient => choosen to retrieve the m-degree of the vertices from the
e-adjacency tensor.



m-uniform natural hb-graph

k-adjacency hypermatrix

Let H = (V, E) be a r-m-uniform hb-graph. V = {v; : i € [n]}.
B each hb-edge in a »-m-uniform hb-graph has same m-cardinality
W k-adjacency hypermatrix of 7 is the hypermatrix Ay = (ailu.ir)lgil

Ay = Z Qei

i€[p]

ir.<n defined by:

.....

where Q., is the k-adjacency hypermatrix of the elementary hb-graph associated to the

hb-edge e; = {”nm e Vg g } € E.

i

B The only non-zero elements of Q., are the elements of indices obtained by permutation of
| |

the multiset {jf““ poao o, Tk } and are all equals to %
i r—1)!
B Remark: when the r-m-uniform hb-graph corresponds to a r-uniform hypergraph => retrieve
the result of the degree-normalized tensor of Cooper and Dutle [2012].
B Claim: The m-degree of a vertex v; in a r-m-uniform hb-graph # of k-adjacency
hypermatrix A4, is:

deg,y, (vj) = Z @jz. -

12,00 Jr SR



Elementary operations on hb-graphs |

Elementary operations

Are needed for building the hb-graph m-uniformisation process
Canonical weighting operation: ¢cw : H = (V, E) — H1 = (V, E, w1) where
Vee€ E: wy (e) =1.
c-dilatation operation: ¢¢.q : H1 = (V, E,w1) — He = (V, E, w.) with
Ve € E: we(e) =c,ce RTT.
y-complemented operation: ¢y.c : Hy = (V, E,w) = Hyg = (\77 E‘,u”;), where H. is the
y-complemented hbgraph of ., with:
mV=vu{yl,
B E=(£(e).cp Where £ : E — M (V) is such that: Ve € F,

— L pme(e) (@) . Y ¥ : ) me(x) ifx € e*
g(e)={am@@ .z eV} e M(V), with me(e)(z) = {m Cde oy
B ¥ is such that Ve € E: @ (§(e)) = w(e).
Decomposition operation: ¢q : H — (H;);c; such that: # = €P H. where the #;have
el
all same universe and no pair of 4, have repeated hb-edge.



Elementary operations on hb-graphs Il

Elementary operations

W y°-vertex-increasing operation: ¢ya.y : H = (V, E,w) » H*+ = (V+, E+,w*) where
HT is the
BVt =VU{y}
B Bt = (¢(e)),cp Withthe map ¢ : E — M (V) such that for all e € E,
1 *
¢(e) = {am@ )z e Vi e M (V) with my ) (z) = {;”6(9”) :;i :,
m wT is such that Ve € E: wT (¢(e)) = w(e).

B Merging operation: ¢m : (Ha, Hp) — H where: ?/L;A = (?,E\, E) is the merged
hb-graph of two weighted hb-graphs Ha = (Va, Ea,wa) and Hy = (Vy, Ep, wp)

BV=V,UV
B E=(()een, 1, Where v : Ea+ Eg — M (V) such that for all

e € Eq+Ep, ¢ (e) = {a™©@ .2 eV} e M (V) with

_me(z) ifzee

my(e) (@) = {0 otherwise

B Ve € Eq, w(e) = wa(e) and Ve € By, w(e) = wy(e).

6 E 4 + Ep is the family obtained with all elements of the family E 4 and all elements of the family E g



Elementary operations on hb-graphs Il

e-adjacency and elementary operations

B Let#H = (V,E)and H' = (V’, E’) be two hb-graphs. Let ¢ : H — H'.

H ¢ is said preserving e-adjacency if vertices of VV’ that are e-adjacent in H’ are either
e-adjacent vertices in H or the maximal subset of these vertices that are in V' are
e-adjacent in H.

H ¢ is said preserving exactly e-adjacency if vertices that are e-adjacent in H’ are
e-adjacent in H and reciprocally.

B Claim 1:

B The composition of two operations which preserve (respectively exactly) e-adjacency
preserves (respectively exactly) e-adjacency.

B The composition of two operations where one preserves exactly e-adjacency and the
other preverves e-adjacency preserves e-adjacency.

H Claim 2:
B The canonical weighting operation, the c-dilatation operation, the merging operation
and, the decomposition operation preserve exactly e-adjacency.

B The y-complemented operation and the y*-vertex-increasing operation preserve
e-adjacency.



Processes involved for building the e-adjacency tensor

Processes used

B Hb-graph m-uniformisation process (Hm-UP): transform:

H a hb-graph H of m-range r .
B into a r4,-m-uniform hb-graph written

B Polynomial homogenization process (PHP): homogeneize the hb-graph polynomial



Choice of the technical coefficients

Choice of the c.; done such that the e-adjacency hypermatrix A = (a;,...;,.)

. Linc[n] allows to
retrieve:

i1,

B the m-degree of the vertices: Z Qiig...i, = deg,, (v;).

W the number of hb-edges |E| .



Decomposition of a hb-graph

Principle of decomposition

W A hb-graph H = (V, E) decomposed in a family of r-m-uniform hb-graphs (#)

refry]”

B Quotienting the hb-edges:

‘R be the equivalency relation defined on E the family of hb-edges of #:
eRe! & #me = #me'.
E/R is the set of classes of hb-edges of same m-cardinality. The elements of E/R
arethe sets: E. = {e € E: #me =r}.
Considering R = {r : E, € E/R},itisset E. = forall r € [r] \R.
Hr = (V,E;) forall r € [ry]
H= P #-

=>
refry]

B Each #, can be associated to a k-adjacency tensor A, viewed as a hypermatrix

Ay,

= (a(r)i,...i, ) of order r, hypercubic and, symmetric of dimension V| = n.



Principle of conservation

The number of hb-edges is kept constant in the decomposition of a hb-graph in layers.

The processes involved in the uniformisation processes keep the number of hb-edges
constant.

> Qiy..ipy, =T B

n

n
1
Bl=2 1B =3~ X ewii,
=il r=1"T 91,0 €[N]
oy

Hence, it follows: Z @i ooy = Z == Z Q(r)ig .. ip+
. . H r - "
7,1,“,.1,,.,,{6[[”,1]] =1l i1,..,0r €[N]

Forall r € [ry]: ¢r = " It is the technical coefficient for the corresponding layer of level
T
r of the hb-graph #.



Hm-UP |

Straightforward m-uniformisation

specific
H ﬂ,( ST N YR SN YR ) LI PYIN LT v
] Y orern

Figure 3: Operations on the original hb-graph to m-uniformize it in the straightforward approach.
Parenthesis with vertical dots indicate parallel operations.

B The transformation ¢ : H +— ’Ftw,d preserves the e-adjacency.



PHP I (i)

Straightforward homogeneisation

B Transforming the hb-edge polynomial in a polynomial of degree r4; => details in article

B The hb-graph polynomial P (zo) = Z ¢; Pe,; (z0) is transformed into a homogeneous
i€[p]

polynomial:

R (zl) _ E CiRei (zl) _ E CiZ;?”l L ijjt]ki y;n7 n+1
i

i€[[p] i€[p]

_ p
representing the homogenized hb-graph H with attached tensor R = Z Ce; Re; Where
i=1
i i
@y =

¢ #mei

and Mintl =TH — ﬁmei.



PHP I (ii)

Straightforward e-adjacency hypermatrix

B The straightforward e-adjacency hypermatrix of a hb-graph # = (V, E) is the

hypermatrix Agy 3¢ defined by:

Astr,’H = g Ce; Rei .

i€[p]

m; Mijg,
where fore; = v, 71 ... v, 7
J1 Tk

} € FE the associated hypermatrix is:

R, = (nl.,.im) , which only non-zero elements are:

05 oo o Mgy, 1M 1!
r"’ﬂi]‘l
J .

My =

Ly, (k)L !

- with m; 41 = 74y — #me; - and the ones with same value and obtained by permutation of
. . &

the indices and where c., = i

mé€j



Hm-UP I

Silo m-uniformisation

specific
: be be B, g N o [
H &<§ TR BN VA BN YRR | KTSamEN PTR ) LN 7P
£ Y rern i

Figure 4: Operations on the original hb-graph to m-uniformize it in the silo approach. Parenthesis
with vertical dots indicate parallel operations.

B Claim: The transformation ¢, : H +— 77% preserves the e-adjacency.



PHP 11 (i)

Silo homogeneization

r3, — 1 additional variables respectively y1 t0 s, —1.

Py (z0) = 7, .2, 7" of deg P = #mes
Add y,, e, With multiplicity m; ., e, = 730 — #me; to have it of degree r4;.

Mt #me;

Pe; (z0) transformed in R., (z#mei) =Pe; (z0) Yy, ..

The only non-zero elements of R, of rank r, and dimension n + 1 are:

My L Mgy Mg, !

Tomigy ik Mt tmes ]
Jq sz (n+#me;) me€; TH:
and the one obtained by permutation of the indices of this first element.

P is transformed into R the homogeneous polynomial attached to the homogeneised
hb-graph #.:

_ ) o Mgy Mijg, Mintstme;
seems) = 3, e (rmes) = 3 sl
i€[p] i€[p]

T™H

Attached tensor R = Z Ce; Re; Where: ce, = .
i€[p] #me;



PHP 11 (ii)

Silo e-adjacency hypermatrix

W The silo e-adjacency hypermatrix of a hb-graph # = (V, E) is the hypermatrix

Asil,n = (ail,“im )il """" in, €ln] defined by Agj .3y = .ez[[:]] ce; Re;
i€p

} € E the associated hypermatrix is:

_ [ mig Mk,
and where for e; = {vh v Yy
R., = (nl_,,iw ) , which only non-zero elements are:

Mgy Lo Mgy Mingg,e,!

T m, . 7717;_““ m =
i gy, T (et gtme) T # e !

and all elements of R, obtained by permutation of the indices and with:

MG ntH#me; = TH — § ™mi gy »

te[ki]
and where: -
Ce; = ———.
¢ #nLei
. Ty
W Inthis case, Az = Y. o > R., where ¢, = —.
'

relryl e €{e:#me=r}



Hm-UP I

Layered m-uniformisation

Initialisation specific

Figure 5: Operations on the original hb-graph to m-uniformize it in the layered approach.
Parenthesis with vertical dots indicate parallel operations.

B Claim: The transformation ¢ : H — ﬁ\g preserves the e-adjacency.



PHP 1l (i)

Layered homogenization

B 74 — 1 additional variables respectively y1 t0 ¥, 1.

mijq Mij, . Aty
IR deg Pe, (20) is transformed into:
5

B P, (20) =z
Rye, (z#mei) = Pe; (20) y#mel, at the first iteration
Rikye, (##tmeitk—1) = Pe; (20) Uk . ¥k . o, atthe k-th iteration
Ry —#mei)e; (ZT'H.—l) = Pe; (20)yy, .. --Ur, 1 atthe lastiteration
Attached tensor R(,.,, —#,,.¢;)e; Of rank r4; and dimension n + r¢ — 1.

B The only non-zero elements of R(ray—#mes)e; are:

mq;jll e m”kll

r migy kg 1 1 |
(re—F#mei)dy - dy. ¢ Int#Emei] . [ntry —1] TH:
i

and the one obtained by permutationR (zr,ﬂ_l) is an homogeneous polynomial
representing H
TH

H#me; .

B R= > Ce;R(ry—stme;)e; Where: ce, =
i€[p]



PHP 1II (ii)

Layered homogenization

B The layered c-adjacency tensor of a hb-graph # = (V, E) is the tensor
Alay (H) = (ai1 -~ ) <n defined by:

181 ey
Apy (H) = E Cei R(ra—#mes)e:
i€[p]
mij, Mij, . .
where for e; = v e T € FE the associated tensor is:
7

R(TH—#mei)ei = (T(TH_#mei)iL“ir%) ’
which only non-zero elements are:
T g i
(r—#meiiy “tody,F Ind#Eme] o ntra 1]t 73!
TH
#me; ’

B Ay, (H) can also be written: Ajy () = > cr > Re,;,where ¢, = iy
relry]  ei€{e#me=r} T

and all elements of R, with indices obtained by permutation and where: c., =



Spectral analysis of tensors

Eigenvalues

A € Cis an eigenvalue of A if it exists a nonzero vector z € C™ such that:
Vi e [1,n], (Axm—l)i = Azt (1)

z is called an eigenvector of A associated with the eigenvalue A
(z,\) is called an eigenpair of A.

spectrum of A: set of all eigenvalues of A

spectra radius of A: p (A): largest modulus of all eigenvalues
H-eigenvalue:

H eigenvalue X of A with real eigenvector = associated to it.
B z is called in this case an H-eigenvector.

Theorem: Let A € T}, » be a nonnegative tensor. Then A has at least one H-eigenvalue

and Ag,... (A) = p(A). Furthermore Ag,, .. (A) has a non-negative H-eigenvector.



Spectral analysis of tensors

Tensors

Non-negative tensors Desirable that for

Nontrivially non-negative tensors constructed tensors:
Strictly non-negative tensors
Strongly non-negative tensors H the _s_pectral radius is
positive

Weakly irreducible 3 5
i B there is a unique

positive H-eigenvector
(up to a multiplicative
constant) associated to
it

Irreducible tensors

=> ensured for strongly
non-negative tensor

Figure 6: Different classes of tensors



Results on the constructed tensors

First spectral result

Claim: The e-adjacency tensor Ay = (ai,._;, ) of a general hb-graph # = (V, E) has its
eigenvalues X such that:

Al < max (A, A%) + 1y )

where A = max (d;) and A* = max (dn+L)
i€[n] i€[n 4

Remark

‘

B [n the straightforward approach:
A* =deg, (N1) = > (r#—j){e: #me=j}|
J€lryn—1]
B In the silo approach:
A* =  max (deg,, (N;))= max ((ry —J)l{e: #me =7}
JjE€lr#—1] jE€lrn—1]
B In the layered approach:
A* =  max (deg,, (N;)) = max (|{e:#me<j}|)=He:#me<ry —1}
JE[ry—1] J€lr#n—1]
B The values of A don’t change whatever the approach taken is.



Results on the constructed tensors

Classification of tensors

Claim: Let # = (V, E) be a hb-graph which is not m-uniform and where U e*=V.
ecE

If H is connected then its straightforward e-adjacency tensor is symmetric nonnegative

weakly irreducible.

Proof: cf article

To ensure weak irreducibility, the special vertex should be added to each hyperedge at least
once.

As a consequence, the spectral radius of this tensor is positive and associated to a unique
positive Perron vector (up to a scaling factor)

Claim: The three e-adjacency tensors built for hb-graphs are nontrivially nonnegative

symmetric tensors when the hb-graph is connected and that the union of the support of
hb-edges covers the vertex set.

Proof: They have principal subtensors that are weakly irreducible, hence strictly non

negative
As a consequence the spectral radii of those tensors are positive.



Comparison |

etails
Ajay (H)

Astr (1) Asil ()
Order Ty rH Ty
Dimension n+1 n+ry —1 n+ry —1
Total number of elements (n+1)™ (n4+ry —1)™ (n+ry —1)™
Total number of elements (n+1)™ (n+ry —1)™ (n+ry —1)"™
potentially used by the way
the tensor is build
T3] !
myjip ! ..My, Ing! mjiy ! mgi g |
Number of repeated e h ! i TR
wit Mg, Lo m;!
elements per hb-edge I ) s Tt
- my nj =Ty — #mej Njk = TH #'"7,8_]
€j :{1:71 L )y, t }
Constant Constant Constant
Number of elements to be 1 1 1
filled per hyperedge of size
s before permutation
|E| |2 |E]

Number of elements to be
described to derived the
tensor by permutation of

indices




Comparison |l

Astr (H> -Asil (H> Alay (H)
Dependent of hb-edge Dependent of hb-edge Dependent of hb-edge
Value of elements of a composition composition composition
hyperedge mj“I..Amjij!nj! mjil!A“mﬁj In k! mﬂl!.“mﬂj!
(r = 1)! (ry —1)! (r = 1)!
Symmetric Yes Yes Yes
- Straightforward: delete Straightforward: delete Straightforward: delete
Reconstructivity

special vertices

special vertices

special vertices

Nodes degree

Yes, but not
straightforward

Yes

Yes

Spectral analysis

Special vertex
increases the amplitude
of the bounds

Special vertices
increase the amplitude
of the bounds

Special vertices
increase the amplitude
of the bounds

Interpretability of the tensor
in term of hb-graph

Yes

Yes

Yes




e-adjacency tensor of a hypergraph

Definition
The e-adjacency tensor of a hypergraph H = (V, E') having maximal cardinality of its hyperedges
kmasx is the tensor A (1) = (as,. defined by:

TIH A i ST

AH) = Z ce;Re,

i€[p]
and where for e; = {v;,,...,v;, } € E the associated tensor is: Re; = (7iy...s,.,, ) » which only
k2
non-zero elements are:
= _ (kmax - kz)'
G2y (nohy ) omax—Fi = kmax!

and all elements of R, obtained by permuting
G1 iy (n k) Pmaxhe

and where:



Hypergraph e-adjacency tensor

Comparison with existing tensor
I R B . R

Order kmax kmax kmax
Dimension n n N+ kmax — 1
Total number of elements nkmax nkmax (1 + kmax — 1)Fmex
Total number of elements potentially nkmax nkmax (n + Kaax — 1)Fmax
used by the way the tensor is build
Kmax
kix as |Es| with P 2, 1] with

Number of non-nul elements for a given
hypergraph

kmax!

as = ps (kmax)

Z s!|Es|

s=1

k1
Number of repeated elements per Fmasx! s!
. kil .ks!
hyperedge of size s
X Varying s if prefix is
Varyin Constant
Number of elements to be filled per ying considered as nonpermuting
X . Ps (kmax) 1
hyperedge of size s before permutation part
[ kmax
Number of elements to be described to > s (kmax) | Es| > s|Ed |E|
s=1

derived the tensor by permutation of
indices

s=1




Hypergraph e-adjacency tensor

Comparison with existing tensor

By Su A(H)
Dependent of hyperedge Dependent of hyperedge Dependent of
Value of elements of a hyperedge composition composition hyperedge size
s 1 (kmax — s)!
as (s—=1)! s (kmax — 1)!

Need computation of

Need computation of

Straightforward: delete

Classification

weakly irreducible if
hypergraph connected and

weakly irreducible if
hypergraph connected and

e Y duplicated vertices duplicated vertices special vertices
Nodes degree Yes Yes Yes
Special vertices
Spectral analysis Yes Yes increase the amplitude
of the bounds
Nonnegative, symmetric, Nonnegative,

Nonnegative,
symmetric, nontrivially
nonnegative

hypergraph / hb-graph

U e=V U e=V
ecE ecE
Interpretability of the tensor in term of No / No No /No No / Yes




Conclusion

Several questions remain

B What is the impact of the proposed tensors on spectral hypergraph theory?

B What is hb-graph spectral theory?

B Can we use hb-graph e-adjacency tensor for diffusion?

B What is the gain of moving from the incident matrix to the e-adjacency hypermatrix?

Thank you for your attention !
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Multisets IV

Given: a natural multiset A,, = (A, m) of universe A = {«; : ¢ € [n]]} and multiplicity function
m.

An other definition

W Definition in Syropoulos [2000]: < Ao, p >

B Ay is the set of all instances (including copies) of A,,
B Equivalency relation p where:

Vo € Ag,Vz' € Ag: zpx’ & Alc€ A: zpc Az pe.
B Also Ag/p is isomorphic to A
B Vz € Ag/p,3lc€ A: |{z:z €T} =m(c) AVz €T : zpc.
B A is called a copy-set of the multiset A, .

B A copy-set for a given multiset is not unique.

B Sets of equivalency classes of two couples < Ag, p > and < A{, p’ > of a given multiset
are isomorphic.



Numbered-copy-hypergraph

Numbering copies

B In natural hb-graphs:
B vertices in a hb-edge with multiplicities greater than 1 = copies of the original vertex
B idea: numbering the copies

m;
7

B Numbered copy-set of a natural multiset A,, = {:Jc
A = {[2i5],,, i € [n]} where:

11 € [n] } is the copy-set

W [2i5],,, = {1, @im, } copies of z;
B j = copy number of the element x;.
B Maximum multiplicity function of a hb-graph: Vv € V : m(v) = maxme(v).
ecE

B Numbered-copy-hypergraph of H: Ho = (V,Eo) where Eo = {ero: k € [p]}:

B Vertex set: Numbered-copy-set of the multiset {v:”(“i) (i€ [[n]]}:

V= {[”i:/]m(m TN [[n]]}i

ki

m Each hb-edge ¢, = {v:j Tijeklni; e [[n]]} is associated to a copy-set /

equivalency relation < ey ¢, pr > Which elements are in V with copy number as small
as possible for each vertex in ey.

B Claim: A numbered-copy-hypergraph is unique for a given hb-graph.
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