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Two talks in one

Plan

Part I: An introduction on hyper-bag-graphs
Part II: An application of hb-graphs to general hypergraph e-adjacency tensor
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Focusing on hb-graphs

Plan

Part I: An introduction on hyper-bag-graphs
Part II: An application of hb-graphs to general hypergraph e-adjacency tensor
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Why hb-graphs?
Research context

PhD started in 10.2016 @ University of
Geneva
Hypergraph Modeling and Visualisation
of Complex Collaboration Networks

Done within the Collaboration Spotting
project @ CERN
=> enhancing co-occurences in datasets

In project...

Datasets modeled and stored as
labelled graphs.

Co-occurences through a reference.

Multiple facets of dataset can be
visualized.

Figure 1: DataHyperCube: prototype in Ouvrard
et al. [2018b]

but co-occurences are...

Bags of elements

n-adic relationships

if bags reduced to sets:
 hypergraphs well fitted to model it!

otherwise we need families of multisets
 hb-graphs are needed
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Hypergraphs (as a reminder)

From graphs to hypergraphs

Hypergraphs ≡ generalisation of graphs
to multiple node links

Hypergraphs introduced by Berge and
Minieka [1973].

Definition
Bretto [2013]:
A hypergraph H family of subsets of a vertex
set
Elements of family hyperedges.

Two visions

set of elements of power set of nodes
 set view

extension of graphs n-adic
relationship view
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Multisets I
Definitions

Multiset: a universe and a multiplicity
function Am = (A,m)
Natural multiset: the range of the
multiplicity function is a subset of N.

In natural multisets: two views:

weighted set:
Am =

{
xm1

1 , . . . , xmnn
}

collection of objects
x1, . . . , x1︸ ︷︷ ︸

m1 times

, . . . , xn, . . . , xn︸ ︷︷ ︸
mn times




Support of the multiset A?m:

A?m = {x ∈ A : m(x) 6= 0}

m-cardinality of a multiset Am:

#mAm =
∑
x∈A

m(x).

Multisets and operations
Let A = UmA and B = UmB be two msets on
the same universe U .

A is included in B (A ⊆ B) if ∀x ∈ U :
mA(x) 6 mB(x).
In this case: A is a submset of B.

Union of A and B: mset C = A ∪ B,
universe U ,

∀x ∈ U : mC(x) = max (mA(x),mB(x)) .

Intersection of A and B: mset
D = A ∩ B, universe U ,

∀x ∈ U : mD(x) = min (mA(x),mB(x)) .

Sum of A and B: mset E = A ] B,
universe U ,

∀x ∈ U : mE(x) = mA(x) +mB(x).

Power multiset of A: set P̃(A) of all
submsets of A.

More in Singh et al. [2007].
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Multisets II

Vector representation
Given: a natural multiset Am = (A,m) of universe A = {αi : i ∈ JnK} and multiplicity function
m. It yields:

Am =
{
α
m
(
αij

)
ij

: αij ∈ A
?
m

}
.

Vector representation:
−→
A = (m (α))α∈A .

Sum of the elements of
−→
A : ]mAm

|A| elements to be described but only |A?m| are non-zero

=> useful for building incidence matrix of hb-graphs
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Multisets III
Given: a natural multiset Am = (A,m) of universe A = {αi : i ∈ JnK} and multiplicity function
m. It yields:

Am =
{
α
m
(
αij

)
ij

: αij ∈ A
?
m

}
.

Unnormalised hypermatrix
representation

Au = (au,i1...ir )i1,...,ir∈JnK, symmetric,
order: r = ]mAm, dimension n

au,i1...ir = 1 if
∀j ∈ JrK : ij ∈ JnK ∧ αij ∈ A?m.

Other elements are zero.

|{au,i1...ir 6= 0, i1, ..., ir ∈ JnK}| =
r!∏

α∈A?m

m (α)

nr elements but only one needed∑
i1,...,ir∈JnK

au,i1...ir =
r!∏

α∈A?m

m (α)
.

Normalised hypermatrix
representation

A = (ai1...ir )i1,...,ir∈JnK, symmetric,
order r = ]mAm, dimension n

ai1...ir =

∏
α∈A?m

m (α)

(r − 1)!
if

∀j ∈ JrK : ij ∈ JnK ∧ αij ∈ A?m.

Other elements are equal to zero.

|{au,i1...ir 6= 0, i1, ..., ir ∈ JnK}| =
r!∏

α∈A?m

m (α)

nr elements but only one needed∑
i1,...,ir∈JnK

ai1...ir = r.
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Hb-graphs I

Hyper-Bag-graph or hb-graph

Hb-graph H = (V,E): family of multisets E = (ei)i∈I
2- called hb-edges - where the

hb-edges have:

same universe V = {v1, . . . , vn}, called vertex set.
support a subset of V .
each hb-edge has its own multiplicity function me : V →W where W ⊂ R+.

Hb-graph with no repeated hb-edge:

∀i1 ∈ I, ∀i2 ∈ I : ei1 = ei2 ⇒ i1 = i2

Order of a hb-graph H: O (H) =
n∑
j=1

max
e∈E

(me (vj)) .

Size of a hb-graph: |E| .
Natural hb-graph: when all multiplicity functions have their range included in N

2I = JpK
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Hb-graphs II

Hyper-Bag-graph or hb-graph

Support hypergraph H: hypergraph of the support of the multisets

Star of a vertex: ∀x ∈ V : H(x) =
{
e
mei (x)
i : ei ∈ E ∧ x ∈ e∗i

}
.

m-degree of a vertex: degm(x) = #mH(x).

m-range, m-co-range

range of a hb-graph: r (H): range of its support hypergraph H.
m-range of a hb-graph: rm (H) = max

e∈E
#me.

co-range of a hb-graph: r (H): co-range of its support hypergraph H.
m-co-range of a hb-graph: crm (H) = min

e∈E
#me.
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Hb-graphs III

Particular cases

k-m-uniform hb-graph: all its hb-edges of same m-cardinality k.

k-uniform hb-graph: support hypergraph is k-uniform.

A hb-graph H is k-m-uniform if and only if rm (H) = crm (H) = k.

A hb-graph H is k-uniform if and only if r (H) = cr (H) = k.

A hypergraph can be seen as a natural hb-graph with multiplicity function ranges in {0, 1}
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Hb-graphs IV

Sum of two hb-graphs
Let H1 = (V1, E1) and H2 = (V2, E2) be two hb-graphs.

V1 ∪ V2 as vertex set

E1 + E2 as hb-edge family: hb-edges are obtained from the hb-edges of E1 and E2 with
same multiplicity for vertices of V1 (respectively V2) but such that for each hyperedge in E1
(respectively E2) the universe is extended to V1 ∪ V2 and the multiplicity function is
extended such that ∀v ∈ V2\V1 : m (v) = 0 (respectively ∀v ∈ V1\V2 : m (v) = 0)

H1 +H2 = (V1 ∪ V2, E1 + E2)

Direct sum

If E1 + E2 doesn’t contain any new pair of repeated hb-edge than the ones already existing
in E1 and those already existing in E2: we have a direct sum

In this case the sum is writtenH1 ⊕H2.
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Incidence matrix of a hb-graph

Incidence

hb-edges are incident if their intersection is not empty

Incidence matrix of the hb-graph H: H = [mj (vi)]16i6n
16j6p

.

Used in: diffusion by exchange in Ouvrard et al. [2018c]

Incidence is a pairwise concept: a vertex is incident to a hb-edge.

The rows allow to see which hb-edges are incident: linked by rows.
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Hb-graphs: extending hypergraphs

Photos from https://www.pexels.com/photo/sailboats-racing-163318/

sunset boat ocean person

1 0 0 0

1 0 0 0

1 4 0 0

1 3 0 3

1 1 1 1

1 2 1 2

0 28 0 17

0 1 1 0

0 0 1 0
Slide presented at CBMI 2018 La Rochelle
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Paths in hb-graphs

Numbering copies

Strict m-path from a vertex x to a vertex y:

vertex / hb-edge alternation: x0e1x1 . . . esxs
x0 = x, xs = y, x ∈ e1 and y ∈ es and that for all i ∈ Js− 1K, xi ∈ ei ∩ ei+1.
number of possible strict m-path: me1 (x0)

∏
i∈Js−1K

mei∩ei+1 (xi)mes (xs)

Large m-path from a vertex x to a vertex y:

same conditions but ∀i ∈ Js− 1K, xi ∈ ei ∪ ei+1.
number of possible large m-path: me1 (x0)

∏
i∈Js−1K

mei∪ei+1 (xi)mes (xs)

Length of a path l(x, y) = s

Almost cycle: m-path with extremities that are different copies of the same object

Cycle: m-path with extremities that are same copies of the object

Distance from x to y:

minimal length d(x, y) of an m-path from x to y if such an m-path exists.
If no m-path exist, x and y are said disconnected and d(x, y) = +∞.

Notion of connected hb-graph related to the connection of its support hypergraph

15/57



How are hb-graphs useful?

Visualisation of exchange-based diffusion

Figure 2: From Ouvrard et al. [2018c] c, IEEE 2018

Applications

Diffusion in
hb-graphs and RW
=> see Ouvrard et al.
[2018c]

e-adjacency
hypermatrix of
hypergraphs => see
next part

On example

548 vertices

300 hb-edges

5 groups

10 vertices in
between the 5 groups
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Focusing on e-adjacency tensor

Plan

Part I: An introduction on hyper-bag-graphs
=> Do you have any question so far?
Part II: An application of hb-graphs to general hypergraph e-adjacency tensor
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Why e-adjacency tensor?

Ideas behind

Ranking of vertices in graphs
=> random walks
RW for hypergraphs exist

Diffusion = local process
=> knowledge of the neighbourhood.

Study of diffusion process => Laplacian
Incidence and adjacency matrices keep
only pairwise information

Pairwise adjacency is too restrictive for
hypergraphs

Higher order adjacency requires tensor

Laplacian tensor is linked to the
adjacency tensor

Adjacency tensor for uniform hypergraph
is known Cooper and Dutle [2012]
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On adjacency

In graphs

Two vertices are said adjacent if it exists an edge linking them
=> pairwise relationship

Vertices incident to one given edge are said e-adjacent.
=> also pairwise relationship
e-adjacency and adjacency are equivalent in graphs

Extending to hypergraphs

k vertices are said k-adjacent if it exists a hyperedge that hold them
=> multi-adic relationship

Vertices of a given hyperedge are said to be e-adjacent.
=> multi-adic relationship
k-adjacency: maximal k-adjacency that can be found in a given hypergraph

In k-uniform hypergraph:

k-adjacency is k-adjacency
Equivalence k-adjacency and e-adjacency.

In general hypergraphs: the equivalence doesn’t hold anymore!
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Tensor for general hypergraphs: the art of filling

What about this?

=> We need to store additional information
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Existing e-adjacency tensor of a hypergraph I

Symmetric e-adjacency tensor3

Let H = (V,E) with V = {v1 , v2, ... , vn} and family E = {e1, e2, ..., ep}.
Let kmax = max {|ei| : ei ∈ E} be the maximum cardinality of the family of hyperedges.
The ([Author’s note]: e-)adjacency hypermatrix of H written
AH =

(
ai1...ikmax

)
16i1,...,ikmax6n

is such that for a hyperedge: e =
{
vl1 , ..., vls

}
of

cardinality s 6 kmax.

ap1...pkmax =
s

α
, where α =

∑
k1,...,ks>1∑
ki=kmax

kmax!
k1!...ks!

with p1, ..., pkmax chosen in all possible way from {l1, ..., ls} with at least once from each element
of {l1, ..., ls}.

3Banerjee et al. [2017]
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Existing e-adjacency tensor of a hypergraph II

Layered e-adjacency tensor4

Let H = (V,E) with V = {v1 , v2, ... , vn} and family E = {e1, e2, ..., ep}.
Let kmax = max {|ei| : ei ∈ E} be the maximum cardinality of the family of hyperedges.
The layered e-adjacency hypermatrix of H written AH =

(
ai1...ikmax

)
16i1,...,ikmax6n

is such

that for each hyperedge: e =
{
vl1 , ..., vls

}
of cardinality s < kmax it is completed in a hyperedge

e =
{
vl1 , ..., vls , ys, ..., ykmax−1

}
.

aσ(l1)...σ(ls)σ(n+s)...σ(n+kmax−1) =
1

(kmax − 1)!
where σ ∈ Skmax .

4Ouvrard et al. [2017, 2018a]
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Existing e-adjacency tensor of a hypergraph III

Prefix e-adjacency tensor5

The ([Author’s note]: prefix e-)adjacency hypermatrix of a general hypergraph H = (V,E), with
V as vertex set ([Author’s note]: identified to JnK) and E as hyperedge set, having range
r (H) = kmax is an order kmax and dimension |V | hypermatrix with entries:

ai1...ikmax
=

{ 1
(s− 1)!

i1 = ... = ik−s+1, {ik−s+1, ..., ik} ∈ E

0 otherwise.

5Sun et al. [2018] New Published 27.09.2018
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Why alternative proposals?

Motivations

The e-adjacency tensor should be easily interpretable:

in term of e- and k-adjacency;
in term of the process used to build it.

There is not a unique way of filling: additional ways require multisets for interpretability
=> Find other proposals hopefully easier to analyse spectrally.

Symmetry is a desirable property

Key points of our contribution

Hb-graphs as extension of hypergraphs

k-adjacency tensor of a m-uniform hb-graph

Three e-adjacency tensors in hb-graphs

Final choice for the e-adjacency tensor
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Elementary hb-graphs

Elementary hb-graph and its k-adjacency hypermatrix

Elementary hb-graph: hb-graph with only one non repeated hb-edge in its hb-edge family.
Typically: He = (V, (e)) .
For He = (V, (e)) :

e described uniquely by its hypermatrix representation Qe.
He also uniquely described by Qe.

Let e =
{
v
mj1
j1

, . . . , v
mjk
jk

}
be a hb-edge of H of m-rank r.

Normalised k-adjacency hypermatrix of an elementary hb-graph He is the normalised
representation of the multiset e:

symmetric hypermatrix Qe = (qi1...ir ) of rank r and dimension n
only nonzero elements are:

q

σ(j1)miσ(j1) ,...,σ
(
jki

)miσ(jki) =
mij1 ! . . .mijki !

(r − 1)!

where σ ∈ SJrK.

Claim: Let H = (V,E) be a hb-graph with no repeated hb-edge. V = {vi : i ∈ JnK}.
H =

⊕
e∈E
He, He = (V, (e))
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Hb-graph polynomial

Iterative process on layers

Each hb-graph can be summarized by a polynomial of degree rH:

P (z0) =
p∑
i=1

ceiPei (z0)

=
p∑
i=1

cei
ri!

mij1 ! . . .mijki !
q
j
mi j1
1 ,...,j

mi jki
ki

z
mij1
j1

. . . z
mijki
jki

cei is a technical coefficient => choosen to retrieve the m-degree of the vertices from the
e-adjacency tensor.
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m-uniform natural hb-graph

k-adjacency hypermatrix
Let H = (V,E) be a r-m-uniform hb-graph. V = {vi : i ∈ JnK}.

each hb-edge in a r-m-uniform hb-graph has same m-cardinality r

k-adjacency hypermatrix of H is the hypermatrix AH = (ai1...ir )16i1,...,ir6n defined by:

AH =
∑
i∈JpK

Qei

where Qei is the k-adjacency hypermatrix of the elementary hb-graph associated to the

hb-edge ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E.

The only non-zero elements of Qei are the elements of indices obtained by permutation of

the multiset
{
j
mij1
1 , . . . , j

mijki
ki

}
and are all equals to

mij1 ! . . .mijki !
(r − 1)!

.

Remark: when the r-m-uniform hb-graph corresponds to a r-uniform hypergraph => retrieve
the result of the degree-normalized tensor of Cooper and Dutle [2012].

Claim: The m-degree of a vertex vj in a r-m-uniform hb-graph H of k-adjacency
hypermatrix AH is:

degm (vj) =
∑

16j2,...,jr6n

ajj2...jr .
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Elementary operations on hb-graphs I

Elementary operations

Are needed for building the hb-graph m-uniformisation process

Canonical weighting operation: φcw : H = (V,E) 7→ H1 = (V,E,w1) where
∀e ∈ E : w1 (e) = 1.
c-dilatation operation: φc-d : H1 = (V,E,w1) 7→ Hc = (V,E,wc) with
∀e ∈ E : wc (e) = c, c ∈ R++.

y-complemented operation: φy-c : Hw = (V,E,w) 7→ H̃w̃ =
(
Ṽ , Ẽ, w̃

)
, where H̃w̃ is the

y-complemented hbgraph of Hw with:

Ṽ = V ∪ {y},
Ẽ = (ξ (e))e∈E where ξ : E →M

(
Ṽ
)

is such that: ∀e ∈ E,

ξ (e) =
{
xmξ(e)(x) : x ∈ Ṽ

}
∈M

(
Ṽ
)

, with mξ(e)(x) =
{
me(x) if x ∈ e?

rH −#me if x = y

w̃ is such that ∀e ∈ E: w̃ (ξ(e)) = w(e).
Decomposition operation: φd : H 7→ (Hi)i∈I such that: H =

⊕
i∈I
Hi where the Hihave

all same universe and no pair of Hi have repeated hb-edge.
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Elementary operations on hb-graphs II

Elementary operations

yα-vertex-increasing operation: φyα-v : H = (V,E,w) 7→ H+ =
(
V +, E+, w+

)
where

H+ is the

V + = V ∪ {y},
E+ = (φ (e))e∈E with the map φ : E →M

(
V +
)

such that for all e ∈ E,

φ (e) =
{
xmφ(e)(x) : x ∈ V +

}
∈M

(
V +
)

with mφ(e)(x) =
{
me(x) if x ∈ e?

α if x = y

w+ is such that ∀e ∈ E: w+ (φ(e)) = w(e).

Merging operation: φm : (Ha,Hb) 7→ Ĥ where: Ĥ
ŵ

=
(
V̂ , Ê, ŵ

)
is the merged

hb-graph of two weighted hb-graphs Ha = (Va, Ea, wa) and Hb = (Vb, Eb, wb)

V̂ = Va ∪ Vb
Ê = (ψ (e))e∈EA+EB

6 where ψ : EA + EB →M
(
V̂
)

such that for all

e ∈ EA + EB , ψ (e) =
{
xmψ(e)(x) : x ∈ V̂

}
∈M

(
V̂
)

with

mψ(e)(x) =
{
me(x) if x ∈ e?

0 otherwise
∀e ∈ Ea, ŵ(e) = wa(e) and ∀e ∈ Eb, ŵ(e) = wb(e).

6
EA + EB is the family obtained with all elements of the familyEA and all elements of the familyEB
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Elementary operations on hb-graphs III

e-adjacency and elementary operations

Let H = (V,E) and H′ = (V ′, E′) be two hb-graphs. Let φ : H 7→ H′.
φ is said preserving e-adjacency if vertices of V ′ that are e-adjacent in H′ are either
e-adjacent vertices in H or the maximal subset of these vertices that are in V are
e-adjacent in H.
φ is said preserving exactly e-adjacency if vertices that are e-adjacent in H′ are
e-adjacent in H and reciprocally.

Claim 1:

The composition of two operations which preserve (respectively exactly) e-adjacency
preserves (respectively exactly) e-adjacency.
The composition of two operations where one preserves exactly e-adjacency and the
other preverves e-adjacency preserves e-adjacency.

Claim 2:

The canonical weighting operation, the c-dilatation operation, the merging operation
and, the decomposition operation preserve exactly e-adjacency.
The y-complemented operation and the yα-vertex-increasing operation preserve
e-adjacency.
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Processes involved for building the e-adjacency tensor

Processes used

Hb-graph m-uniformisation process (Hm-UP): transform:

a hb-graph H of m-range rH
into a rH-m-uniform hb-graph written H

Polynomial homogenization process (PHP): homogeneize the hb-graph polynomial
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Choice of the technical coefficients

Principle
Choice of the cei done such that the e-adjacency hypermatrix A = (ai1...ir )i1,...,ir∈JnK allows to
retrieve:

the m-degree of the vertices:
∑

i2,...,ir∈JnK
aii2...ir = degm (vi).

the number of hb-edges |E| .
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Decomposition of a hb-graph

Principle of decomposition

A hb-graph H = (V,E) decomposed in a family of r-m-uniform hb-graphs (Hr)r∈JrHK.

Quotienting the hb-edges:

R be the equivalency relation defined on E the family of hb-edges of H:
eRe′ ⇔ #me = #me′.
E/R is the set of classes of hb-edges of same m-cardinality. The elements of E/R
are the sets: Er = {e ∈ E : #me = r}.
Considering R = {r : Er ∈ E/R}, it is set Er = ∅ for all r ∈ JrHK \R.
Hr = (V,Er) for all r ∈ JrHK
=>

H =
⊕
r∈JrHK

Hr.

Each Hr can be associated to a k-adjacency tensor Ar viewed as a hypermatrix
AHr =

(
a(r)i1...ir

)
of order r, hypercubic and, symmetric of dimension |V | = n.
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Principle of conservation

Principle

The number of hb-edges is kept constant in the decomposition of a hb-graph in layers.

The processes involved in the uniformisation processes keep the number of hb-edges
constant.∑
i1,...,irH∈Jn1K

ai1...irH = rH |E| .

|E| =
n∑
r=1
|Er| =

n∑
r=1

1
r

∑
i1,...,ir∈JnK

a(r)i1...ir

Hence, it follows:
∑

i1,...,irH∈Jn1K
ai1...irH =

n∑
r=1

rH
r

∑
i1,...,ir∈JnK

a(r)i1...ir .

For all r ∈ JrHK: cr =
rH
r

. It is the technical coefficient for the corresponding layer of level

r of the hb-graph H.
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Hm-UP I

Straightforward m-uniformisation

H

(
...
...
...
.

Hr

φd Hr,1
φcw φc-d Hr,cr

specific

...

...

...

.)
r∈rH

φm Hw,d
φy1-c H̃w,d

Figure 3: Operations on the original hb-graph to m-uniformize it in the straightforward approach.
Parenthesis with vertical dots indicate parallel operations.

The transformation φs : H 7→ H̃w,d preserves the e-adjacency.
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PHP I (i)

Straightforward homogeneisation

Transforming the hb-edge polynomial in a polynomial of degree rH => details in article

The hb-graph polynomial P (z0) =
∑
i∈JpK

ciPei (z0) is transformed into a homogeneous

polynomial:

R (z1) =
∑
i∈JpK

ciRei (z1) =
∑
i∈JpK

ciz
mij1
j1

. . . z
mijki
jki

y
mi n+1
1

representing the homogenized hb-graphH with attached tensorR =
p∑
i=1

ceiRei where

cei =
rH

#mei
and mi n+1 = rH − ]mei.
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PHP I (ii)

Straightforward e-adjacency hypermatrix

The straightforward e-adjacency hypermatrix of a hb-graph H = (V,E) is the
hypermatrix Astr,H defined by:

Astr,H =
∑
i∈JpK

ceiRei
.

where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E the associated hypermatrix is:

Rei
=
(
ri1...irH

)
, which only non-zero elements are:

r
j
mij1
1 ...j

mijki
ki

(n+1)min+1
=
mij1 ! . . .mijki !mi n+1!

rH!

- with mi n+1 = rH −#mei - and the ones with same value and obtained by permutation of
the indices and where cei =

rH
#mei

.
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Hm-UP II

Silo m-uniformisation

H

(
...
...
...
.

Hr

φd Hr,1
φcw φc-d Hr,cr

specific
φ

y
rH−r
r -v H+

r,cr
...
...
...
.)

r∈rH

φm Ĥ
ŵ

Figure 4: Operations on the original hb-graph to m-uniformize it in the silo approach. Parenthesis
with vertical dots indicate parallel operations.

Claim: The transformation φs : H 7→ Ĥ
ŵ

preserves the e-adjacency.
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PHP II (i)

Silo homogeneization

rH − 1 additional variables respectively y1 to yrH−1.

Pei (z0) = z
mij1
j1

. . . z
mijki
jki

of degP = #mei.

Add y#mei with multiplicity mi#mei = rH −#mei to have it of degree rH.

Pei (z0) transformed in Rei
(

z#mei

)
= Pei (z0) y

mi n+#mei
#mei

The only non-zero elements of Rei of rank rH and dimension n+ 1 are:

r
j
mij1
1 ...j

mijki
ki

(n+#mei)
min+#mei

=
mij1 ! . . .mijki !mi n+#mei !

rH!

and the one obtained by permutation of the indices of this first element.

P is transformed into R the homogeneous polynomial attached to the homogeneised
hb-graph H:

R
(

zrH−1
)

=
∑
i∈JpK

ciRei
(

z#mei

)
=
∑
i∈JpK

ciz
mij1
j1

. . . z
mijki
jki

y
mi n+#mei
#mei

Attached tensorR =
∑
i∈JpK

ceiRei where: cei =
rH

#mei
.
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PHP II (ii)

Silo e-adjacency hypermatrix

The silo e-adjacency hypermatrix of a hb-graph H = (V,E) is the hypermatrix
Asil,H =

(
ai1...irH

)
i1,...,irH∈JnK

defined by Asil,H =
∑
i∈JpK

ceiRei

and where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E the associated hypermatrix is:

Rei
=
(
ri1...irH

)
, which only non-zero elements are:

r
j
mij1
1 ...j

mijki
ki

(n+#mei)
min+#mei

=
mij1 ! . . .mijki !mi n+#mei !

rH!

and all elements of Rei
obtained by permutation of the indices and with:

mi n+#mei = rH −
∑
l∈JkiK

mi jl ,

and where:
cei =

rH
#mei

.

In this case, Asil,H =
∑

r∈JrHK
cr

∑
ei∈{e:#me=r}

Rei
where cr =

rH
r
.
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Hm-UP III

Layered m-uniformisation

H

(
...
...
...
.

Hr

φd Hr,1
φcw φc-d Hr,cr

specific

...

...

...

.)
r∈rH

Iterative phase

Initialisation

Kk K+
k

φy1
k
−v

Hk+1,ck+1 k < rH?
φm

yes

no

k := k + 1

Ĥ

k > 0?

K0 = H1,c1

k := 0

no

yes

Figure 5: Operations on the original hb-graph to m-uniformize it in the layered approach.
Parenthesis with vertical dots indicate parallel operations.

Claim: The transformation φs : H 7→ Ĥ
ŵ

preserves the e-adjacency.
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PHP III (i)

Layered homogenization

rH − 1 additional variables respectively y1 to yrH−1.

Pei (z0) = z
mij1
j1

. . . z
mijki
jki

, degPei (z0) is transformed into:

R(1)ei

(
z#mei

)
= Pei (z0) y1

#mei
at the first iteration

R(k)ei

(
z#mei+k−1

)
= Pei (z0) y1

#mei
...y1

#mei+k−1 at the k-th iteration

R(rH−#mei)ei

(
zrH−1

)
= Pei (z0) y1

#mei
. . . y1

rH−1 at the last iteration
Attached tensor R(rH−#mei)ei of rank rH and dimension n+ rH − 1.

The only non-zero elements of R(rH−#mei)ei are:

r
(rH−#mei) j

mij1
1 ...j

mijki
ki

[n+#mei]1...[n+rH−1]1
=
mij1 ! . . .mijki !

rH!

and the one obtained by permutationR
(

zrH−1
)

is an homogeneous polynomial

representing H

R =
∑
i∈JpK

ceiR(rH−#mei)ei ,where: cei =
rH

#mei
.

42/57



PHP III (ii)

Layered homogenization

The layered e-adjacency tensor of a hb-graph H = (V,E) is the tensor
Alay (H) =

(
ai1...irH

)
16i1,...,irH6n

defined by:

Alay (H) =
∑
i∈JpK

ceiR(rH−#mei)ei

where for ei =
{
v
mij1
j1

, . . . , v
mijki
jki

}
∈ E the associated tensor is:

R(rH−#mei)ei =
(
r(rH−#mei)i1...irH

)
,

which only non-zero elements are:

r
(rH−#mei)j

mij1
1 ...j

mijki
ki

[n+#mei]1...[n+rH−1]1
=
mij1 ! . . .mijki !

rH!

and all elements of Reiwith indices obtained by permutation and where: cei =
rH

#mei
.

Alay (H) can also be written: Alay (H) =
∑

r∈JrHK
cr

∑
ei∈{e:#me=r}

Rei ,where cr =
rH
r
.
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Spectral analysis of tensors

Eigenvalues

λ ∈ C is an eigenvalue of A if it exists a nonzero vector x ∈ Cn such that:

∀i ∈ J1, nK ,
(
Axm−1

)
i

= λxm−1
i (1)

x is called an eigenvector of A associated with the eigenvalue λ

(x, λ) is called an eigenpair of A.

spectrum of A: set of all eigenvalues of A
spectra radius of A: ρ (A): largest modulus of all eigenvalues

H-eigenvalue:

eigenvalue λ of A with real eigenvector x associated to it.
x is called in this case an H-eigenvector.

Theorem: Let A ∈ Tm,n be a nonnegative tensor. Then A has at least one H-eigenvalue
and λHmax (A) = ρ (A). Furthermore λHmax (A) has a non-negative H-eigenvector.
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Spectral analysis of tensors

Tensors

Non-negative tensors

Nontrivially non-negative tensors
Strictly non-negative tensors

Strongly non-negative tensors

Weakly irreducible

Irreducible tensors

Figure 6: Different classes of tensors

Aim
Desirable that for
constructed tensors:

the spectral radius is
positive

there is a unique
positive H-eigenvector
(up to a multiplicative
constant) associated to
it

=> ensured for strongly
non-negative tensor
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Results on the constructed tensors

First spectral result
Claim: The e-adjacency tensor AH =

(
ai1...ikmax

)
of a general hb-graph H = (V,E) has its

eigenvalues λ such that:
|λ| 6 max (∆,∆?) + rH (2)

where ∆ = max
i∈JnK

(di) and ∆? = max
i∈JnAK

(dn+i)

Remark

In the straightforward approach:
∆? = degm (N1) =

∑
j∈JrH−1K

(rH − j) |{e : #me = j}|

In the silo approach:
∆? = max

j∈JrH−1K
(degm (Nj)) = max

j∈JrH−1K
((rH − j) |{e : #me = j}|)

In the layered approach:
∆? = max

j∈JrH−1K
(degm (Nj)) = max

j∈JrH−1K
(|{e : #me 6 j}|) = |{e : #me 6 rH − 1}|

The values of ∆ don’t change whatever the approach taken is.
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Results on the constructed tensors

Classification of tensors

Claim: Let H = (V,E) be a hb-graph which is not m-uniform and where
⋃
e∈E

e? = V.

If H is connected then its straightforward e-adjacency tensor is symmetric nonnegative
weakly irreducible.

Proof: cf article

To ensure weak irreducibility, the special vertex should be added to each hyperedge at least
once.

As a consequence, the spectral radius of this tensor is positive and associated to a unique
positive Perron vector (up to a scaling factor)

Claim: The three e-adjacency tensors built for hb-graphs are nontrivially nonnegative
symmetric tensors when the hb-graph is connected and that the union of the support of
hb-edges covers the vertex set.

Proof: They have principal subtensors that are weakly irreducible, hence strictly non
negative

As a consequence the spectral radii of those tensors are positive.
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Comparison I

Details
Astr (H) Asil (H) Alay (H)

Order rH rH rH

Dimension n+ 1 n+ rH − 1 n+ rH − 1
Total number of elements (n+ 1)rH (n+ rH − 1)rH (n+ rH − 1)rH

Total number of elements
potentially used by the way

the tensor is build

(n+ 1)rH (n+ rH − 1)rH (n+ rH − 1)rH

Number of repeated
elements per hb-edge

ej =
{
v
mji1
i1

, . . . , v
mjij
ij

}
rH!

mji1 ! . . .mjij !nj !
with

nj = rH −#mej

rH!
mji1 ! . . .mjij !njk!

with
njk = rH −#mej

rH!
mji1 ! . . .mjij !

Number of elements to be
filled per hyperedge of size
s before permutation

Constant
1

Constant
1

Constant
1

Number of elements to be
described to derived the
tensor by permutation of

indices

|E| |E| |E|
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Comparison II

Details
Astr (H) Asil (H) Alay (H)

Value of elements of a
hyperedge

Dependent of hb-edge
composition

mji1 ! . . .mjij !nj !
(rH − 1)!

Dependent of hb-edge
composition

mji1 ! . . .mjij !njk!
(rH − 1)!

Dependent of hb-edge
composition
mji1 ! . . .mjij !

(rH − 1)!
Symmetric Yes Yes Yes

Reconstructivity
Straightforward: delete

special vertices
Straightforward: delete

special vertices
Straightforward: delete

special vertices

Nodes degree
Yes, but not

straightforward
Yes Yes

Spectral analysis
Special vertex

increases the amplitude
of the bounds

Special vertices
increase the amplitude

of the bounds

Special vertices
increase the amplitude

of the bounds

Interpretability of the tensor
in term of hb-graph

Yes Yes Yes
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e-adjacency tensor of a hypergraph

Definition
The e-adjacency tensor of a hypergraph H = (V,E) having maximal cardinality of its hyperedges
kmax is the tensor A (H) =

(
ai1...irH

)
16i1,...,irH6n

defined by:

A (H) =
∑
i∈JpK

ceiRei

and where for ei =
{
vj1 , . . . , vjki

}
∈ E the associated tensor is: Rei =

(
ri1...irH

)
, which only

non-zero elements are:

rj1...jki (n+ki)kmax−ki =
(kmax − ki)!

kmax!
and all elements of Rei obtained by permuting

j1 . . . jki (n+ ki)kmax−ki ,

and where:
cei =

kmax

ki
.
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Hypergraph e-adjacency tensor

Comparison with existing tensor
BH SH A (H)

Order kmax kmax kmax

Dimension n n n+ kmax − 1
Total number of elements nkmax nkmax (n+ kmax − 1)kmax

Total number of elements potentially
used by the way the tensor is build

nkmax nkmax (n+ kmax − 1)kmax

Number of non-nul elements for a given
hypergraph

kmax∑
s=1

αs |Es| with

αs = ps (kmax)
kmax!
k1!...ks!

kmax∑
s=1

s! |Es|

kmax∑
s=1

αs |Es| with

αs =
kmax!

k1!...ks!ns!
with

ns = kmax − s

Number of repeated elements per
hyperedge of size s

kmax!
k1!...ks!

s!
kmax!

k1!...ks!ns!
with

ns = kmax − s

Number of elements to be filled per
hyperedge of size s before permutation

Varying
ps (kmax)

Varying s if prefix is
considered as nonpermuting

part

Constant
1

Number of elements to be described to
derived the tensor by permutation of

indices

kmax∑
s=1

ps (kmax) |Es|
kmax∑
s=1

s |Es| |E|
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Hypergraph e-adjacency tensor

Comparison with existing tensor
BH SH A (H)

Value of elements of a hyperedge
Dependent of hyperedge

composition
s

αs

Dependent of hyperedge
composition

1
(s− 1)!

Dependent of
hyperedge size

(kmax − s)!
s (kmax − 1)!

Reconstructivity
Need computation of
duplicated vertices

Need computation of
duplicated vertices

Straightforward: delete
special vertices

Nodes degree Yes Yes Yes

Spectral analysis Yes Yes
Special vertices

increase the amplitude
of the bounds

Classification

Nonnegative, symmetric,
weakly irreducible if

hypergraph connected and⋃
e∈E

e = V

Nonnegative,
weakly irreducible if

hypergraph connected and⋃
e∈E

e = V

Nonnegative,
symmetric, nontrivially

nonnegative

Interpretability of the tensor in term of
hypergraph / hb-graph

No / No No / No No / Yes
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Conclusion

Several questions remain

What is the impact of the proposed tensors on spectral hypergraph theory?

What is hb-graph spectral theory?

Can we use hb-graph e-adjacency tensor for diffusion?

What is the gain of moving from the incident matrix to the e-adjacency hypermatrix?

Thank you for your attention !
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Multisets IV

Given: a natural multiset Am = (A,m) of universe A = {αi : i ∈ JnK} and multiplicity function
m.

An other definition

Definition in Syropoulos [2000]: < A0, ρ >

A0 is the set of all instances (including copies) of Am
Equivalency relation ρ where:

∀x ∈ A0, ∀x′ ∈ A0 : xρx′ ⇔ ∃!c ∈ A : xρc ∧ x′ρc.

Also A0/ρ is isomorphic to A

∀x ∈ A0/ρ, ∃!c ∈ A : |{x : x ∈ x}| = m(c) ∧ ∀x ∈ x : xρc.
A0 is called a copy-set of the multiset Am.

Remark

A copy-set for a given multiset is not unique.

Sets of equivalency classes of two couples < A0, ρ > and < A′0, ρ
′ > of a given multiset

are isomorphic.
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Numbered-copy-hypergraph

Numbering copies

In natural hb-graphs:

vertices in a hb-edge with multiplicities greater than 1 = copies of the original vertex
idea: numbering the copies

Numbered copy-set of a natural multiset Am =
{
x
mi
i : i ∈ JnK

}
is the copy-set

Ăm =
{

[xi j ]mi : i ∈ JnK
}

where:

[xi j ]mi =
{
xi 1, ..., ximi

}
copies of xi

j = copy number of the element xi.

Maximum multiplicity function of a hb-graph: ∀v ∈ V : m(v) = max
e∈E

me(v).

Numbered-copy-hypergraph of H: H0 =
(
V̆ , E0

)
where E0 = {ek 0 : k ∈ JpK}:

Vertex set: Numbered-copy-set of the multiset
{
v
m(vi)
i : i ∈ JnK

}
:

V̆ =
{

[vi j ]m(vi)
: i ∈ JnK

}
.

Each hb-edge ek =
{
v
mk ij
ij

: j ∈ JkK ∧ ij ∈ JnK
}

is associated to a copy-set /

equivalency relation < ek 0, ρk > which elements are in V̆ with copy number as small
as possible for each vertex in ek.

Claim: A numbered-copy-hypergraph is unique for a given hb-graph.
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