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Background

Ideas behind

Ranking of vertices in graphs
=> random walks
RW for hypergraphs exist

Diffusion = local process
=> knowledge of the neighbourhood.

Study of diffusion process => Laplacian
Incidence and adjacency matrices keep
only pairwise information

Pairwise adjacency is too restrictive for
hypergraphs

Higher order adjacency requires
tensor
Laplacian tensor is linked to the
adjacency tensor

Adjacency tensor for uniform
hypergraph is known Cooper and
Dutle [2012]
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Our contribution

Key points

Rigourous definition of adjacency in hypergraphs
A proposal for an e-adjacency tensor interpretable in term of hypergraph uniformisation
Two processes are designed:

a hypergraph uniformisation process (HUP)
a polynomial homogeneisation process (PUP)
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Hypergraphs

From graphs to hypergraphs

Hypergraphs ≡ generalisation of graphs
to multiple vertex links

Hypergraphs introduced by Berge and
Minieka [1973].

Definition
Bretto [2013]:
A hypergraph H on a finite set
V = {v1 ; v2; ... ; vn} is a family of
hyperedges E = {e1, e2, ..., ep} where each
hyperedge is a non-empty subset of V .

Two visions

set of elements of power set of vertices
 set view

extension of graphs n-adic
relationship view

k-uniform hypergraph
All its hyperedges have same cardinality k.
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On adjacency I

In graphs

Two vertices are said adjacent if it exists an edge linking them
=> pairwise relationship

Vertices incident to one given edge are said e-adjacent.
=> also pairwise relationship
e-adjacency and adjacency are equivalent in graphs
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On adjacency II

Extending to hypergraphs

k vertices are said k-adjacent if it exists a hyperedge that hold them
=> multi-adic relationship
Vertices of a given hyperedge are said to be e-adjacent.
=> multi-adic relationship
k-adjacency: maximal k-adjacency that can be found in a given
hypergraph
In k-uniform hypergraph: equivalence k-adjacency and e-adjacency.
In general hypergraphs: the equivalence doesn’t hold anymore!
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Existing k-adjacency tensor for k-uniform hypergraph

Cooper and Dutle (k-)adjacency tensor

([Author’s note]: degree normalized k-)adjacency tensor: Cooper and Dutle [2012]
A =

(
ai1...ik

)
16i1,...,ik6n

such that:

ai1...ik =
1

(k − 1)!

{
1 if

{
vi1 , ..., vik

}
∈ E

0 otherwise.

Allows to retrieve degree of vertices:

deg (vi) =
n∑

i2,...,ik=1

aii2...ik .

Allows to have hypergraph spectral theory Qi and Luo [2017]
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Tensor for general hypergraphs: the art of filling

What about this?

=> We need to store additional information
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Existing e-adjacency tensor for general hypergraph

Banerjee e-adjacency tensor
Let H = (V,E) with V = {v1 , v2, ... , vn} and family E = {e1, e2, ..., ep}.
Let kmax = max {|ei| : ei ∈ E} be the maximum cardinality of the family of hyperedges.
The ([Author’s note]: e-) adjacency hypermatrix of H written
AH =

(
ai1...ikmax

)
16i1,...,ikmax6n

is such that for a hyperedge: e =
{
vl1 , ..., vls

}
of

cardinality s 6 kmax.

ap1...pkmax =
s

α
, where α =

∑
k1,...,ks>1∑
ki=kmax

kmax!
k1!...ks!

with p1, ..., pkmax chosen in all possible way from {l1, ..., ls} with at least once from each element
of {l1, ..., ls}.
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Why an other proposal?

Motivations

The e-adjacency tensor should be easily interpretable:

in term of e- and k-adjacency
in term of the way it is built

Information on k-adjacency should be easy to gather

Can we really fill a tensor without transforming its spectra?

Requirements
The tensor should be:

invariant to vertex permutations either globally or at least locally.

allow the retrieval of the hypergraph in its original form.

the sparsest possible in between two possible choices.

allow the retrieval of the degrees of the nodes

store the information of e-adjacency and k-adjacency
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Layers I

Decomposition of the hypergraph in layers

H =
kmax⊕
k=1
Hk, H is with no repeated hyperedge

Family of Cooper and Duttle k-adjacency tensors (Ak): Hk!Ak
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Filling and merging

Iterative process on layers
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Hypergraph uniformisation process

Two elementary operations

y-vertex-augmentation operation:

add a vertex to each hyperedge of a given hypergraph
y-vertex-augmented hypergraph Hw =

(
V ,E,w

)
of Hw

merging operation:

merges two weighted hypergraphs Ha = (Va, Ea, wa) and Hb = (Vb, Eb, wb)
obtained: merged hypergraph Ĥ

ŵ
=
(
V̂ , Ê, ŵ

)
The hypergraph uniformisation process

Transform each Hk into a weighted hypergraph Hwk,k = (V,Ek, wk) wk(e) = ck
=> dilatation coefficient: keep the generalized hand-shake lemma

Iterates over a two-phase step:

the inflation phase
the merging phase

13/23



Moving to homogeneous polynomial

Symmetric hypermatrices and homogeneous polynomials

Symmetric cubical hypermatrices are bijectively mapped to homogeneous polynomials
Comon et al. [2015]

Use the hypermatrix multilinear matrix multiplication Lim [2013].

Hk =>Ak =
(
a(k) i1...ik

)
(z)[k] = (z, ..., z) ∈ (Rn)k, (z) [k].Ak contains only one element:
Pk (z0) =

∑
16i1,...,ik6n

a(k) i1...ikz
i1 ...zik .

As Ak is symmetric: Pk (z0) =
∑

16i16...6ik6n

α(k) i1...ikz
i1 ...zik with

α(k) i1...ik = k!a(k) i1...ik .
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Polynomial uniformisation process I

Principle

H
Hypergraph

(Hk)
Uniform hypergraphs

layers of H

(Ak)
Family

of
hypermatrices

(Pk)
Family of homogeneous

polynomials

×ck

+

if k < kmaxR1 = c1P1
If k > 1:

Rk = ckPk + Rk−1yk−1

Homogeneous
polynomial of

aggregated layers
of level 1 to k

Rkmax

Global homogeneous
polynomial of H

if
k = kmax

Rkmax

layered
e-adjacency
matrix of H

Figure 1: Different phases of the construction of the e-adjacency tensor
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Polynomial uniformisation process II

Details

Rk+1 (zk) = yk (k+1)
(
Rk

(
zk−1

yk (k)

)
+ ck+1Pk+1

(
zo

yk (k+1)

))
= Rk (zk−1) yk + ck+1

n∑
i1,...,ik+1=1

a(k+1) i1 ... ik+1z
i1 ...zik+1
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From homogeneous polynomial to hypermatrix

Definition of the hypermatrix of layer of level k

Rk
(

w(k)
)

=
n+k−1∑

i1,...,ik=1
r(k) i1 ... ikw

i1
(k)...w

ik
(k) where:

for i ∈ JnK: wi(k) = zi and for i ∈ Jn+ 1;n+ k − 1K: wi(k) = yi−n

for all ∀j ∈ JkK, for 1 6 i1 < ... < ij 6 n, for all l ∈ Jj + 1; kK1: il = n+ l − 1 and, for all
σ ∈ Sk:

r(k)σ(i1)...σ(ik) =
cjα(j) i1...ij

k!
=
j!
k!
cja(j) i1...ij

otherwise r(k) i1 ... ik is null.

1With the convention Jp, qK = ∅ if p > q
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Layered e-adjacency hypermatrix

Choice of dilatation coefficient
We choose: cj =

kmax

j
to allow the generalized hand-shake lemma to hold.

|E| =
1

kmax

∑
i1,...,ikmax∈Jn+kmax−1K

ri1...ikmax
=
kmax∑
j=1

1
j

∑
i1,...,ij∈JnK

a(j) i1...ij .

Hence, combining above with the fact that a(j) i1...ij =
1

(j − 1)!
when

{
vi1 , ..., vij

}
∈ E and 0

otherwise: ri1...ikmax
=

1
(kmax − 1)!

for nonzero elements of Rkmax .

Layered e-adjacency hypermatrix
Rkmax is called the layered e-adjacency tensor of the hypergraph H. We write it later AH.
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Properties

Finding degrees
It holds:

n+kmax−1∑
i2,...,ikmax =1
δii2...ikmax =0

aii2...ikmax
= di

where: ∀i ∈ JnK : di = deg (vi) and ∀i ∈ Jkmax − 1K : dn+i = deg (yi) .
Moreover: ∀j ∈ J2; kmaxK:

|{e : |e| = j}| = dn+j − dn+j−1

and:
|{e : |e| = 1}| = dn+1
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Spectral results

Bound for eigenvalues

Theorem
The e-adjacency tensor AH has its eigenvalues λ such that:

|λ| 6 max (∆,∆?) (1)

where ∆ = max
16i6n

(di) and ∆? = max
16i6kmax−1

(dn+i) .

Theorem
Let H be a r-regular2 r-uniform hypergraph with no repeated hyperedge. Then this maximum is
reached.

2A hypergraph is said r-regular if all vertices have same degree r.
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Conclusion

Quick summary and Future Work

Layered e-adjacency tensor is easy to build

Can be stored in |E| elements as it is symmetric

But inflates spectral bounds

HUP and PUP: strong basis for further alternatives

Target: allow repetition => multisets are needed => hb-graphs introduced

Ouvrard et al. [2018]
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Thank you for your attention

Questions?
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